Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,a...Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively.展开更多
This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power pro...This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season.展开更多
Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational s...Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.展开更多
1 Introduction Amid escalating global climate change,the“dual carbon”goals of carbon peak and carbon neutrality have become a focal point of global attention and an important strategy for sustainable development[1]....1 Introduction Amid escalating global climate change,the“dual carbon”goals of carbon peak and carbon neutrality have become a focal point of global attention and an important strategy for sustainable development[1].With the rapid development of renewable energy technologies and the increasing public demand for environmental protection and low-carbon living,the adoption of new energy vehicles,particularly electric vehicles(EVs).展开更多
This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimiz...This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is...This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is based on a robust nonlinear observer, which is used to estimate system states and perturbations and then employ input-output feedbazk linearization to compensate for the system nonlinearities and uncertainties. The estimation of system states and perturbations allows input-output linearization of the nonlinear system without an accurate mathematical model of nominal plant. The simulation results show that the observer-based nonlinear control method is superior in comparison with the conventional model-based state feedback linearizing controller.展开更多
The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application...The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application prospects owing to its merits of being clean,safe,and sustainable.Solar energy is converted into electricity through photovoltaic(PV)cells;however,the overall conversion efficiency of PV modules is relatively low,and most of the captured solar energy is dissipated in the form of heat.This not only reduces the power generation efficiency of solar cells but may also have a negative impact on the electrical parameters of PV modules and the service life of PV cells.To overcome the shortcomings,an efficient approach involves combining a PV cell with a thermoelectric generator(TEG)to form hybrid PV-TEG systems,which simultaneously improve the energy conversion efficiency of the PV system by reducing the operating temperature of the PV modules and increasing the power output by utilizing the waste heat generated from the PV system to generate electricity via the TEGs.Based on a thorough examination of the literature,this study comprehensively reviews 14 maximum power point tracking(MPPT)algorithms currently applied to hybrid PV-TEG systems and classifies them into five major categories for further discussion,namely conventional,mathematics-based,metaheuristic,artificial intelligence,and other algorithms.This review aims to inspire advanced ideas and research on MPPT algorithms for hybrid PV-TEG systems.展开更多
The wireless capsule endoscope,as a small electronic device,has conquered some limitations of traditional wired diagnosing tools,such as the uncomfortableness of the cables for the patient and the inability to examine...The wireless capsule endoscope,as a small electronic device,has conquered some limitations of traditional wired diagnosing tools,such as the uncomfortableness of the cables for the patient and the inability to examine the very convoluted small intestine section.However,this technique is still encountering a lot of practical challenges and is looking for feasible improvements.This work investigates the RF performance of the wireless capsule endoscope system by studying the electromagnetic(EM) wave propagation within the human body.A wireless capsule endoscopy transmission channel model is constructed to serve the purpose of investigating signal attenuations according to the relative position between the transmitter and the receiver.Within 300-500 MHz,the S_(21) results are regular and do not display any sudden changes,which allows a suitable expression to be derived for S_(21) in terms of frequency and offset.The results provide useful information for capsule localization.展开更多
In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room ...In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room temperature and atmospheric pressure is reported.The higher dielectric constant and thermal conductivity of packing material are found to be the key parameters in enhancing the NH;synthesis performance.The NH;concentration of 1344 ppm is achieved in the presence of BaTiO_(2),which is 106%higher than that of SiO_(2),at the specific input energy(SIE)of 5.4 k J·l^(-1).The presence of materials with higher dielectric constant,i.e.BaTiO_(2) and TiO_(2)in this work,would contribute to the increase of electron energy and energy injected to plasma,which is conductive to the generation of chemically active species by electron-impact reactions.Therefore,the employment of packing materials with higher dielectric constant has proved to be beneficial for NH;synthesis.Compared to that of Al_(2)O_(3),the presence of Be O and Al N yields 31.0%and 16.9%improvement in NH;concentration,respectively,at the SIE of5.4 k J·l^(-1).The results of IR imaging show that the addition of Be O decreases the surface temperature of the packed region by 20.5%to 70.3℃ and results in an extension of entropy increment compared to that of Al_(2)O_(3),at the SIE of 5.4 k J·l^(-1).The results indicate that the presence of materials with higher thermal conductivity is beneficial for NH;synthesis,which has been confirmed by the lower surface temperature and higher entropy increment of the packed region.In addition,when SIE is higher than the optimal value,further increasing SIE would lead to the decrease of energy efficiency,which would be related to the exacerbation in reverse reaction of NH;formation reactions.展开更多
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas ...In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.展开更多
This contribution describes the use of chromatic techniques for quantifying signatures of partial discharges(PD).A brief description of the basis of chromatic monitoring is given along with explanations of how the app...This contribution describes the use of chromatic techniques for quantifying signatures of partial discharges(PD).A brief description of the basis of chromatic monitoring is given along with explanations of how the approach may be applied for addressing signals produced by PDs.Laboratory test data from several sources for different types of PDs,operating conditions and geometries have been subjected to the chromatic procedures.These include a point-plane gap,a sphere in a liquid and treeing in a cable.Chromatic changes in PD signals have been investigated as a function of the amplitude of the alternating voltage producing the PD,the time duration before full electrical breakdown and for different forms of PDs.Results of the chromatic processing of these data are presented in the form of a number of chromatic maps relating to different quarter cycles of the alternating voltage producing the PDs.The results show the potential of the chromatic techniques for indicating the likelihood of full electrical breakdown and for distinguishing between certain forms of PDs.A summary of the chromatic processing procedures is presented for producing chromatic maps and for adaptation in further exploring PD signal features.展开更多
This paper is focused on a wireless energy harvesting system using a rectifying antenna (rectenna). The proposed device consists of a wideband cross-dipole antenna, a microwave low-pass filter and a doubling rectifyin...This paper is focused on a wireless energy harvesting system using a rectifying antenna (rectenna). The proposed device consists of a wideband cross-dipole antenna, a microwave low-pass filter and a doubling rectifying circuit using Shottcky diodes as rectifying elements. Previously, a few of wideband rectennas have been investigated at 1.7 to 2.5 GHz. The originality of this paper is on the new wideband rectenna design which can harvest the ambient radio frequency (RF) power at 1.7 to 2.5 GHz. In this system, a new wideband cross dipole is designed and used to achieve the required bandwidth and duel-polarization. In addition, the voltage doubling rectifying circuit is optimized to achieve the best performance at power density levels 2 which are typical in urban environments. The characteristics of the proposed rectenna over the desired frequency range are investigated, and the integrated rectenna is simulated, made and tested for low input power densities from 5 to 200 μW/cm2. The simulation and measurement results of the rectenna are compared and a good agreement is achieved. The results demonstrate that the maximum rectenna conversion efficiency is nearly 57% around 1.7 GHz and over 20% over the wideband of interest for the incident power density of 120 μW/cm2. It is noted that the impedance matching is one of the main factors affecting the rectenna energy conversion efficiency. This new wideband rectenna has great potential to harvest wireless energy in GSM/3G/4G and ISM 2.4 GHz bands.展开更多
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ...For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.展开更多
Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-the...Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.展开更多
This work is devoted to the experimental investigation of an AC argon gliding arc discharge at atmospheric pressure.The dynamic behaviour of the argon gliding arc plasma is investigated by the oscillations of the elec...This work is devoted to the experimental investigation of an AC argon gliding arc discharge at atmospheric pressure.The dynamic behaviour of the argon gliding arc plasma is investigated by the oscillations of the electrical signals,while the time-resolved arc root motion behaviour on the electrode wall is analyzed by high-speed photography.It is found that the anode and cathode arc roots exhibit different motion behaviour on the electrode surface.In addition,emission spectroscopic technique has been employed to determine the axial distribution of the gas temperature and electron density in the argon gliding arc plasma.展开更多
Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out unde...Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out under the assumptions that the strength of the intergrain exchange interaction is weaker than that of the intragrain exchange interaction, that inhomogeneous nanostructures result in the distribution of the strength of the intergrain exchange interaction, and that there exists nonmagnetic intergranular phase (NMIP) between grain boundaries. The distribution of the strength of the intergrain exchange interaction was simulated by the lognormal distribution with the standard deviation of σ.The calculations for Nd 2Fe 14B/α-Fe nanocomposite magnets reveal that a suitably weak intergrain exchange interaction and small grain size enable us to improve magnetic properties. It is also found that a Nd 2Fe 14B/α-Fe nanocomposite magnet has a potential of a (BH) max value exceeding 300 kJ·m -3. On the other hand, the calculations for Nd 2Fe 14B/Fe 3B nanocomposite magnets reveal that the distribution of the strength of the intergrain exchange interaction deteriorates magnetic properties significantly. Particularly, this tendency is remarkable, when the grain size L is larger than its optimum value, 11 nm. The existence of nonmagnetic boundary layers accelerats this tendency. At σ=0.2, the calculated demagnetization curve for the model magnet composed of Nd 2Fe 14B(36%)/Fe 3B(54%)/NMIP(10%) (Valume fraction) grains (L=15 nm) agrees with that obtained experimentally for a Nd 2Fe 14B/Fe 3B nanocomposite magnet. These results suggest importance of refinement of grain size, suppression of a nonmagnetic intergranular phase, and preparation of homogeneous nanostructure for superior magnetic properties.展开更多
The current interruption capability of a gas, when used in high voltage gas-blast circuit breakers,depends not only on its material properties but also the flow field since turbulence plays a dominant role in arc cool...The current interruption capability of a gas, when used in high voltage gas-blast circuit breakers,depends not only on its material properties but also the flow field since turbulence plays a dominant role in arc cooling during the interruption process. Based on available experimental results, a study of CO2 switching arcs under a DC(direct current) current in the model circuit breaker has been conducted to calibrate CO2 arc model and to analyse its electric and thermal property. Through detailed analysis of the results mechanisms responsible for the temperature distribution are identified and the domain energy transportation process of different region discussed. The present work provides significant coefficients for CO2 switching arc simulation and gives a better understanding of CO2 arc burning mechanisms.展开更多
A magneto-electric field appearing in a laboratory due to moving charges has unusual properties. In particular, such a field of kinematical origin does not obey the wave equation with a non-relativistic velocity inste...A magneto-electric field appearing in a laboratory due to moving charges has unusual properties. In particular, such a field of kinematical origin does not obey the wave equation with a non-relativistic velocity instead of light speed;so, its movement resembles that of a rigid body. In this paper the field of a uniformly charged sphere moving at constant velocity is considered. Relativistic axiom, implicitly used in the derivation of formulas describing a kinematic deformation for the proper spherical field from the point of view of a fixed observer, is revealed. A discrepancy was found between the generally accepted idea of the configuration of a deformed field and its real geometry. It is shown that the correct interpretation of known formulas leads to a logical contradiction, which cannot be eliminated within the framework of the theory of relativity. A scheme of a decisive experiment is proposed.展开更多
1 Introduction The proposal of the concept of“New Power System”aims to illustrate the transform direction of the traditional power system,acting as the development core of the future new power grid.To achieve this,t...1 Introduction The proposal of the concept of“New Power System”aims to illustrate the transform direction of the traditional power system,acting as the development core of the future new power grid.To achieve this,the proposed strategic targets of“carbon neutralization and carbon peaking”must be implemented and insisted[1].The core feature of the new power system is that renewable energy plays a leading role and becomes the main source of energy supply,meanwhile,the goal of green energy utilization has also been put forward on the agenda.Green energy utilization includes two aspects,one is the exploitation and promotion of various green energy technologies,and the other is the digitalization of energy management.Under this trend,stochastic and fluctuating energy sources such as wind power and photovoltaic power replace deterministic controllable power sources such as thermal power,bringing challenges to power grid regulation and dispatching,as well as flexible operation.The large-scale integration of renewable energy and increasingly high proportion of power electronic equipment tend to bring about fundamental changes in the operation characteristics,safety control,and production mode of the power system.展开更多
基金supported by the National Natural Science Foundation of China(62263014)the Yunnan Provincial Basic Research Project(202301AT070443,202401AT070344).
文摘Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively.
基金supported by National Natural Science Foundation of China(62263014)Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443).
文摘This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season.
基金The Key R&D Project of Jilin Province,Grant/Award Number:20230201067GX。
文摘Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344)National Natural Science Foundation of China(62263014).
文摘1 Introduction Amid escalating global climate change,the“dual carbon”goals of carbon peak and carbon neutrality have become a focal point of global attention and an important strategy for sustainable development[1].With the rapid development of renewable energy technologies and the increasing public demand for environmental protection and low-carbon living,the adoption of new energy vehicles,particularly electric vehicles(EVs).
基金This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393the funding from the National Natural Science Foundation of China (No. 52177149)
文摘This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
文摘This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is based on a robust nonlinear observer, which is used to estimate system states and perturbations and then employ input-output feedbazk linearization to compensate for the system nonlinearities and uncertainties. The estimation of system states and perturbations allows input-output linearization of the nonlinear system without an accurate mathematical model of nominal plant. The simulation results show that the observer-based nonlinear control method is superior in comparison with the conventional model-based state feedback linearizing controller.
基金This work was supported by National Natural Science Foundation of China(61963020,62263014)Yunnan Provincial Basic Research Project(202201AT070857).
文摘The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application prospects owing to its merits of being clean,safe,and sustainable.Solar energy is converted into electricity through photovoltaic(PV)cells;however,the overall conversion efficiency of PV modules is relatively low,and most of the captured solar energy is dissipated in the form of heat.This not only reduces the power generation efficiency of solar cells but may also have a negative impact on the electrical parameters of PV modules and the service life of PV cells.To overcome the shortcomings,an efficient approach involves combining a PV cell with a thermoelectric generator(TEG)to form hybrid PV-TEG systems,which simultaneously improve the energy conversion efficiency of the PV system by reducing the operating temperature of the PV modules and increasing the power output by utilizing the waste heat generated from the PV system to generate electricity via the TEGs.Based on a thorough examination of the literature,this study comprehensively reviews 14 maximum power point tracking(MPPT)algorithms currently applied to hybrid PV-TEG systems and classifies them into five major categories for further discussion,namely conventional,mathematics-based,metaheuristic,artificial intelligence,and other algorithms.This review aims to inspire advanced ideas and research on MPPT algorithms for hybrid PV-TEG systems.
基金Project (BK20131183) supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects (RDF-14-03-24,RDF-14-02-48) supported by Research Development Fund of Xi’an Jiaotong-Liverpool University,China
文摘The wireless capsule endoscope,as a small electronic device,has conquered some limitations of traditional wired diagnosing tools,such as the uncomfortableness of the cables for the patient and the inability to examine the very convoluted small intestine section.However,this technique is still encountering a lot of practical challenges and is looking for feasible improvements.This work investigates the RF performance of the wireless capsule endoscope system by studying the electromagnetic(EM) wave propagation within the human body.A wireless capsule endoscopy transmission channel model is constructed to serve the purpose of investigating signal attenuations according to the relative position between the transmitter and the receiver.Within 300-500 MHz,the S_(21) results are regular and do not display any sudden changes,which allows a suitable expression to be derived for S_(21) in terms of frequency and offset.The results provide useful information for capsule localization.
基金the financial support from National Natural Science Foundation of China(No.51976093)K C Wong Magna Fund in Ningbo University。
文摘In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room temperature and atmospheric pressure is reported.The higher dielectric constant and thermal conductivity of packing material are found to be the key parameters in enhancing the NH;synthesis performance.The NH;concentration of 1344 ppm is achieved in the presence of BaTiO_(2),which is 106%higher than that of SiO_(2),at the specific input energy(SIE)of 5.4 k J·l^(-1).The presence of materials with higher dielectric constant,i.e.BaTiO_(2) and TiO_(2)in this work,would contribute to the increase of electron energy and energy injected to plasma,which is conductive to the generation of chemically active species by electron-impact reactions.Therefore,the employment of packing materials with higher dielectric constant has proved to be beneficial for NH;synthesis.Compared to that of Al_(2)O_(3),the presence of Be O and Al N yields 31.0%and 16.9%improvement in NH;concentration,respectively,at the SIE of5.4 k J·l^(-1).The results of IR imaging show that the addition of Be O decreases the surface temperature of the packed region by 20.5%to 70.3℃ and results in an extension of entropy increment compared to that of Al_(2)O_(3),at the SIE of 5.4 k J·l^(-1).The results indicate that the presence of materials with higher thermal conductivity is beneficial for NH;synthesis,which has been confirmed by the lower surface temperature and higher entropy increment of the packed region.In addition,when SIE is higher than the optimal value,further increasing SIE would lead to the decrease of energy efficiency,which would be related to the exacerbation in reverse reaction of NH;formation reactions.
基金supported by National Natural Science Foundation of China(No.51576174)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120101110099)the Fundamental Research Funds for the Central Universities(No.2015FZA4011)
文摘In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.
文摘This contribution describes the use of chromatic techniques for quantifying signatures of partial discharges(PD).A brief description of the basis of chromatic monitoring is given along with explanations of how the approach may be applied for addressing signals produced by PDs.Laboratory test data from several sources for different types of PDs,operating conditions and geometries have been subjected to the chromatic procedures.These include a point-plane gap,a sphere in a liquid and treeing in a cable.Chromatic changes in PD signals have been investigated as a function of the amplitude of the alternating voltage producing the PD,the time duration before full electrical breakdown and for different forms of PDs.Results of the chromatic processing of these data are presented in the form of a number of chromatic maps relating to different quarter cycles of the alternating voltage producing the PDs.The results show the potential of the chromatic techniques for indicating the likelihood of full electrical breakdown and for distinguishing between certain forms of PDs.A summary of the chromatic processing procedures is presented for producing chromatic maps and for adaptation in further exploring PD signal features.
文摘This paper is focused on a wireless energy harvesting system using a rectifying antenna (rectenna). The proposed device consists of a wideband cross-dipole antenna, a microwave low-pass filter and a doubling rectifying circuit using Shottcky diodes as rectifying elements. Previously, a few of wideband rectennas have been investigated at 1.7 to 2.5 GHz. The originality of this paper is on the new wideband rectenna design which can harvest the ambient radio frequency (RF) power at 1.7 to 2.5 GHz. In this system, a new wideband cross dipole is designed and used to achieve the required bandwidth and duel-polarization. In addition, the voltage doubling rectifying circuit is optimized to achieve the best performance at power density levels 2 which are typical in urban environments. The characteristics of the proposed rectenna over the desired frequency range are investigated, and the integrated rectenna is simulated, made and tested for low input power densities from 5 to 200 μW/cm2. The simulation and measurement results of the rectenna are compared and a good agreement is achieved. The results demonstrate that the maximum rectenna conversion efficiency is nearly 57% around 1.7 GHz and over 20% over the wideband of interest for the incident power density of 120 μW/cm2. It is noted that the impedance matching is one of the main factors affecting the rectenna energy conversion efficiency. This new wideband rectenna has great potential to harvest wireless energy in GSM/3G/4G and ISM 2.4 GHz bands.
文摘For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.
基金This work was supported by Natural Science Foundation of China(Item number:51777060,U1361109)Natural Science Foundation of Henan province(Item number:162300410117)the he innovative research team plan of Henan Polytechnic University(Item number:T2015-2).
文摘Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.
基金Project supported by the Royal Society and the Royal Academy of Engineering
文摘This work is devoted to the experimental investigation of an AC argon gliding arc discharge at atmospheric pressure.The dynamic behaviour of the argon gliding arc plasma is investigated by the oscillations of the electrical signals,while the time-resolved arc root motion behaviour on the electrode wall is analyzed by high-speed photography.It is found that the anode and cathode arc roots exhibit different motion behaviour on the electrode surface.In addition,emission spectroscopic technique has been employed to determine the axial distribution of the gas temperature and electron density in the argon gliding arc plasma.
文摘Effects of the intergrain exchange interaction on magnetic properties of nanocomposite magnets were investigated by using the computer simulation based on the micromagnetic theory. The simulation was carried out under the assumptions that the strength of the intergrain exchange interaction is weaker than that of the intragrain exchange interaction, that inhomogeneous nanostructures result in the distribution of the strength of the intergrain exchange interaction, and that there exists nonmagnetic intergranular phase (NMIP) between grain boundaries. The distribution of the strength of the intergrain exchange interaction was simulated by the lognormal distribution with the standard deviation of σ.The calculations for Nd 2Fe 14B/α-Fe nanocomposite magnets reveal that a suitably weak intergrain exchange interaction and small grain size enable us to improve magnetic properties. It is also found that a Nd 2Fe 14B/α-Fe nanocomposite magnet has a potential of a (BH) max value exceeding 300 kJ·m -3. On the other hand, the calculations for Nd 2Fe 14B/Fe 3B nanocomposite magnets reveal that the distribution of the strength of the intergrain exchange interaction deteriorates magnetic properties significantly. Particularly, this tendency is remarkable, when the grain size L is larger than its optimum value, 11 nm. The existence of nonmagnetic boundary layers accelerats this tendency. At σ=0.2, the calculated demagnetization curve for the model magnet composed of Nd 2Fe 14B(36%)/Fe 3B(54%)/NMIP(10%) (Valume fraction) grains (L=15 nm) agrees with that obtained experimentally for a Nd 2Fe 14B/Fe 3B nanocomposite magnet. These results suggest importance of refinement of grain size, suppression of a nonmagnetic intergranular phase, and preparation of homogeneous nanostructure for superior magnetic properties.
基金supported by National Natural Science Foundation of China(Grant No.51337006)
文摘The current interruption capability of a gas, when used in high voltage gas-blast circuit breakers,depends not only on its material properties but also the flow field since turbulence plays a dominant role in arc cooling during the interruption process. Based on available experimental results, a study of CO2 switching arcs under a DC(direct current) current in the model circuit breaker has been conducted to calibrate CO2 arc model and to analyse its electric and thermal property. Through detailed analysis of the results mechanisms responsible for the temperature distribution are identified and the domain energy transportation process of different region discussed. The present work provides significant coefficients for CO2 switching arc simulation and gives a better understanding of CO2 arc burning mechanisms.
文摘A magneto-electric field appearing in a laboratory due to moving charges has unusual properties. In particular, such a field of kinematical origin does not obey the wave equation with a non-relativistic velocity instead of light speed;so, its movement resembles that of a rigid body. In this paper the field of a uniformly charged sphere moving at constant velocity is considered. Relativistic axiom, implicitly used in the derivation of formulas describing a kinematic deformation for the proper spherical field from the point of view of a fixed observer, is revealed. A discrepancy was found between the generally accepted idea of the configuration of a deformed field and its real geometry. It is shown that the correct interpretation of known formulas leads to a logical contradiction, which cannot be eliminated within the framework of the theory of relativity. A scheme of a decisive experiment is proposed.
文摘1 Introduction The proposal of the concept of“New Power System”aims to illustrate the transform direction of the traditional power system,acting as the development core of the future new power grid.To achieve this,the proposed strategic targets of“carbon neutralization and carbon peaking”must be implemented and insisted[1].The core feature of the new power system is that renewable energy plays a leading role and becomes the main source of energy supply,meanwhile,the goal of green energy utilization has also been put forward on the agenda.Green energy utilization includes two aspects,one is the exploitation and promotion of various green energy technologies,and the other is the digitalization of energy management.Under this trend,stochastic and fluctuating energy sources such as wind power and photovoltaic power replace deterministic controllable power sources such as thermal power,bringing challenges to power grid regulation and dispatching,as well as flexible operation.The large-scale integration of renewable energy and increasingly high proportion of power electronic equipment tend to bring about fundamental changes in the operation characteristics,safety control,and production mode of the power system.