We report for the first time the geochemistry of rare earth elements(REE) in the weathered crusts of I-type and calc-alkaline to high-K(shoshonitic) granitic rocks at Mamasa and Palu region, Sulawesi Island, Indon...We report for the first time the geochemistry of rare earth elements(REE) in the weathered crusts of I-type and calc-alkaline to high-K(shoshonitic) granitic rocks at Mamasa and Palu region, Sulawesi Island, Indonesia. The weathered crusts can be divided into horizon A(lateritic profile) and B(weathered horizon). Quartz, albite, kaolinite, halloysite and montmorrilonite prevail in the weathered crust. Both weathered profiles show that the total REE increased from the parent rocks to the horizon B but significantly decrease toward the upper part(horizon A). LREE are enriched toward the upper part of the profile as shown by La/YbN value. However, HREE concentrations are high in horizon B1 in Palu profile. The total REE content of the weathered crust are relatively elevated compared to the parent rocks, particularly in the lower part of horizon B in Mamasa profile and in horizon B2 in Palu profile. This suggests that REE-bearing accessory minerals may be resistant against weathering and may remain as residual phase in the weathered crusts. The normalized isocon diagram shows that the mass balance of major and REE components between each horizon in Mamasa and Palu weathering profile are different. The positive Ce anomaly in the horizon A of Mamasa profile indicated that Ce is rapidly precipitated during weathering and retain at the upper soil horizon.展开更多
The demand for specific earth retaining wall method is increasing, along with the advancement and overcrowding of underground space use, such as the?presence of close structures, in an urban area. The method is named ...The demand for specific earth retaining wall method is increasing, along with the advancement and overcrowding of underground space use, such as the?presence of close structures, in an urban area. The method is named stepped-twin?retaining wall. The feature of this method is to have inner and outer retaining walls and excavate the ground by two-step in order to minimize the effect of the excavation on neighboring existing structures. However, the design of the earth retaining wall is currently carried out by individual engineers based on their own experience. Therefore, it is crucial that the standard method of retaining wall using a two-step construction is established. As the first step toward the standardization, evaluation of factors affecting the ground behavior of the earth retaining wall was carried out. In particular, we picked up four major considerable factors, which are horizontal distance between the outer and inner walls, depth of outer wall embedment, mechanical properties of soil. The evaluation was done by using two dimensional FEM analysis and the results were summarized to make clear the effect of each factor.展开更多
There are many earthquakes in Japan. If a large earthquake were to occur, it is necessary to consider how pipelines such as: gas, sewage, telecommunications, and so on are restored quickly. At that time, damaged gas p...There are many earthquakes in Japan. If a large earthquake were to occur, it is necessary to consider how pipelines such as: gas, sewage, telecommunications, and so on are restored quickly. At that time, damaged gas pipelines are very dangerous because fire in large areas could be caused by the leakage of gas from the damaged pipeline. Accordingly, it is necessary for gas companies to stop the supply of gas to houses over a large area. Once the gas supply is stopped, there is a considerable amount of time to repair the pipelines over the area. For this reason, a quick method for restoring damaged gas pipelines would be useful after an earthquake. Recently, we have been developing new flash setting material for the damaged gas pipeline by an injection into the house connection of gas when the gas supply is stopped quickly in an emergency. From these points of view, in order to clarify to what degree the contents of flash settling material affect the properties of the injected fly ash mixture causing heavy damage to the gas pipeline in an earthquake, different combinations of fly ash, chemical agents and water were considered in several experiments.展开更多
This study examines the behavior of trace- and rare-earth elements (REE) in different hydrothermal alteration facies (silicic, advanced argillic and argillic) of Cijulang high-sulfidation epithermal gold deposit, West...This study examines the behavior of trace- and rare-earth elements (REE) in different hydrothermal alteration facies (silicic, advanced argillic and argillic) of Cijulang high-sulfidation epithermal gold deposit, West Java, Indonesia. The results of the study indicate that remarkable differences in the behavior of trace elements and REE are observed in the studied alteration facies. All REE in the silicic facies are strongly depleted. In advanced argillic facies, Heavy rare-earth elements (HREE) are strongly depleted whereas light rare earth elements (LREE) are quite enriched. REE concentrations in the argillic facies show little or no variation with respect to fresh rock counterparts. A strong depletion of REE in the silicic facies is likely to be favored by the highly acidic nature of the hydrothermal fluids, the abundance of complexing ions such as Cl ˉ, F ˉ, and in the hydrothermal solutions and the absence of the secondary minerals that can fix the REE in their crystal structures. An apparent immobility of LREE in advanced argillic facies is possibly due to the presence of alunite. The immobility of REE in the argillic facies suggests the higher pH of the fluids, the lower water/rock ratios and the presence of the phyllosilicates minerals. -展开更多
Minor errors in the spoil deposition process,such as placing stronger materials with higher shear strength over weaker ones,can lead to potential dump failure.Irregular deposition and inadequate compaction complicate ...Minor errors in the spoil deposition process,such as placing stronger materials with higher shear strength over weaker ones,can lead to potential dump failure.Irregular deposition and inadequate compaction complicate coal spoil behaviour,neces-sitating a robust methodology for temporal monitoring.This study explores using unmanned aerial vehicles(UAV)equipped with red-green-blue(RGB)sensors for efficient data acquisition.Despite their prevalence,raw UAV data exhibit temporal inconsistency,hindering accurate assessments of changes over time which could be attributed to radiometric errors.To this end,the study introduces an empirical line calibration with invariant targets(ELC-IT),for precise calibration across diverse scenes,particularly in the context of UAV imagery used to monitor the evolving nature of spoil dumps.To evaluate the effec-tiveness of this calibration approach,accuracy assessment of an object-based classification is conducted on both calibrated and uncalibrated data.This classification involves several steps:performing segmentation,carrying out feature extraction,and integrating the extracted features and ground truth labels collected over the time period of UAV image capture into machine learning pipelines.Calibrated RGB data exhibit a substantial performance advantage,achieving a 90.7%overall accuracy for spoil pile classification using ensemble(subspace discriminant),representing a noteworthy 7%improvement compared to classifying uncalibrated data.The study highlights the critical role of data calibration in optimising UAV effectiveness for spatio-temporal mine dump monitoring.These findings play a crucial role in informing and refining sustainable management practices within the domain of mine waste management.展开更多
Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors i...Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process.展开更多
Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation.This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and intro...Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation.This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and introducing CO_(2)nanobubble technology to improve the performance of cement-fly ash-based backfill materials(CFB).The properties including fluidity,setting time,uniaxial compressive strength,elastic modulus,porosity,microstructure and CO_(2)storage performance were systematically studied through methods such as fluidity evaluation,time test,uniaxial compression test,mercury intrusion porosimetry(MIP),scanning electron microscopy-energy dispersive spectroscopy analysis(SEM-EDS),and thermogravimetric-differential thermogravimetric analysis(TG-DTG).The experimental results show that the density and strength of the material are significantly improved under the synergistic effect of fractal dimension and CO_(2)nanobubbles.When the fractal dimension reaches 2.65,the mass ratio of coarse and fine aggregates reaches the optimal balance,and the structural density is greatly improved at the same time.At this time,the uniaxial compressive strength and elastic modulus reach their peak values,with increases of up to 13.46%and 27.47%,respectively.CO_(2)nanobubbles enhance the material properties by promoting hydration reaction and carbonization.At the microscopic level,CO_(2)nanobubble water promotes the formation of C-S-H(hydrated calcium silicate),C-A-S-H(hydrated calcium aluminium silicate)gel and CaCO_(3),which is the main way to enhance the performance.Thermogravimetric studies have shown that when the fractal dimension is 2.65,the dehydration of hydration products and the decarbonization process of CaCO_(3)are most obvious,and CO_(2)nanobubble water promotes the carbonization reaction,making it surpass the natural state.The CO_(2)sequestration quality of cement-fly ash-based materials treated with CO_(2)nanobubble water at different fractal dimensions increased by 12.4wt%to 99.8wt%.The results not only provide scientific insights for the design and implementation of low-carbon filling materials,but also provide a solid theoretical basis for strengthening green mining practices and promoting sustainable resource utilization.展开更多
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-typ...The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.展开更多
Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be ...Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be used to recover this coal. The use of highwall mining systems has increasingly come into play in the US and Australia. However, it is not common in Indonesia. Moreover, Indonesia coal measure is categorized as weak geological condition. Some problems are likely to arise during the application of the highwall mining system for example instability of openings and highwalls due to the roof and pillar failures. Therefore, study of highwall mining system application in Indonesia is needed in order to increase the recovery rate of coal mining in Indonesia. This paper described the characteristics of the highwa!l mining system and discussed the appropriate highwall mining system application in weak geological condition, Indonesia. From the results of a series of laboratory tests and numerical analyses, it can be concluded that the stability of pillars and mine openings in auger mining systems is much higher than that in CHM and an auger mining system is suitable for such as very weak/poor strata conditions. Moreover, the application of backfilling system is very effective for improvement of the stability of pillar and openings.展开更多
Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was ad...Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure.展开更多
Painan coals of West Sumatra were selected as semi-anthracitic coal sample for studying the physicochemical properties such as measurement, evaluation and description of the changes of surface characteristic of coal s...Painan coals of West Sumatra were selected as semi-anthracitic coal sample for studying the physicochemical properties such as measurement, evaluation and description of the changes of surface characteristic of coal sample and their oxidation in the atmospheric air at a temperature ranging from 105 to 400 ℃ for 30 min. Several methods are adopted to analyze and discuss several phenomena of the oxidized Painan coal surface during oxidation process for the change in the physicochemical properties as determined by Atomic Force Microscope (AFM), contact angle, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses as well as other supporting analytical equipment. AFM analyses revealed some changes in adhesion force and surface morphology with more adhesion force available between 0.6 and 8.6 nN on polished coal surfaces due to the increased oxidation temperature. The study revealed that the extent of hydrophobicity of coal surface decreased with the increased of oxidation temperature expressed as contact angles at about 80° and 20°. Another phenomenon occurred during the experiment was hydrophilicity index of coal surface increase at approximately 1.3 and 2.9. Oxidation of coal that occurred with increased temperature also indicated an increase in oxygen content from 3.8% to 22.9 wt%. Increased oxygen functional group also noted that oxidation of coal took place during the treatment. We also found that oxidation treatment also affected the combustion properties of coal: decreasing ignition temperature between 452.9 and 317.6, lowering the reactivity of coal at maximum combustion rate temperature, and reflecting their char characteristics as burnt out, ranging from 652.3 to 648.5 ℃.展开更多
The Gulf of Suez region is one of the most interesting geothermal areas in Egypt because of the high temperatures of its springs.The eastern and western shores of the Gulf of Suez are characterized by superficial ther...The Gulf of Suez region is one of the most interesting geothermal areas in Egypt because of the high temperatures of its springs.The eastern and western shores of the Gulf of Suez are characterized by superficial thermal manifestations including a cluster of hot springs with varied temperatures.Variations of deuterium and oxygen-18 concentrations in thermal waters have been used to aid in describing the source of recharge in the Gulf of Suez hot springs.Isotope and geochemical data for the Gulf of Suez thermal waters suggest that recharge to the hot springs may not be entirely from the Gulf of Suez water,but possibly from the meteoric water that comes from areas of higher altitude surrounding the hot springs.展开更多
This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result...This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result of overburden excavation.The excessively acidic condition inhibits plant growth due to the dissolution of harmful elements,such as Al,Fe,and Mn.Fly ash,an alkaline byproduct of coal combustion generated in thermal power plants is expected to be adopted to ameliorate acidic soils.However,the mixing ratio of fy ash must be considered because excessive addition of fy ash can have a negative impact on plant growth due to its physical/chemical properties.The pot trials using Acacia mangium demonstrate the evolution of plant growth with a 5%–10%addition of fy ash into acidic soil.When the acidic soil has a high potential for metal dissolution,the metal ions leached from the acidic soil are large,making it difcult to improve plant growth due to osmotic and ionic stress.This work suggests that the efects of fy ash on metal ions leached from the soil have to be considered for the amelioration of acidic soil.展开更多
Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysi...Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysis by LA-(MC)-ICPMS and conventional(U-Th)/He analysis,all applied to single zircon crystals,in an attempt to constrain the origin and timing of world-class Sb(Au-Hg) deposits in Banxi(South China).Zircon separated from a quartz-stibnite ore and an altered country rock samples revealed similar U-Pb age spectra defining two major populations-Paleoproterozoic(~1900-2500 Ma) and Neoproterozoic(~770 Ma),which are characterized by variable εHf(t) values(-10.7 to 9.1 and-16.5 to 11.2,respectively) and Hf crustal model ages(TDMC)(2.48 to 3.24 Ga and 0.97 to 2.71 Ga,respectively).The U-Pb age and Hf isotopic features of the zircons are consistent with the Banxi Group in the region,indicating that the zircons involved in the low-temperature hydrothermal system were originally from the Banxi Group country rocks.Thirty-three mineralization-related zircon crystals yielded a mean(U-Th)/He age of 123.8±3.8 Ma,which is interpreted to represent the timing of the latest low-temperature mineralization stage of the Banxi Sb deposit.The combined U-Pb,Lu-Hf and(U-Th)/He data suggest that Precambrian basement rocks were the major contributors to the low-temperature mineralization,and that Early Cretaceous(130-120 Ma) could be the most important ore-forming epoch for the Sb deposits in South China.This study also demonstrates the analytical feasibility of integrated U-Pb-Lu-Hf-(U-Th)/He "triple-dating",all applied to single zircon crystals.This approach reveals the full evolution of zircon,from its origin of the magmatic source,through its crystallization and low-temperature cooling.Although this study demonstrates the usefulness of this integrated approach in dating low-temperature mineralization,it has great potential for zircon provenance and other studies that may benefit from the large amount of information that can be extracted from single zircon crystals.展开更多
It is often required to know which roadway (adjustment roadway) resistances and how much values of the resis- tances should be changed to make the airflow rates in roadways (target roadways) to certain required va...It is often required to know which roadway (adjustment roadway) resistances and how much values of the resis- tances should be changed to make the airflow rates in roadways (target roadways) to certain required values in the practice of mine ventilation. In this case, the airflow rates of the target roadways and the resistances of the roadways other than the ad- justment roadways are the given conditions and the resistances of the adjustment roadways are the solutions to be found. No straightforward method to solve the problem has been found up to now. Therefore, trial and error method using the ventilation network analysis program is utilized to solve the problem so far. The method takes long calculation time and the best answer is not necessarily obtained. The authors newly defined "airflow element" as an element of the ventilation network analysis. The resistances that satisfy the airflow requirements can be calculated straight forwardly by putting the function of the airflow element into the ventilation network analysis. The air power required for the ventilation can be minimized while meeting the airflow requirements by the advanced application of the method. The authors made the computer program fulfill the method. The program was applied to actual ventilation network and it was found that the method is very practical and the time required for the analysis is short.展开更多
The effective diffusion coefficients in mine ventilation-flows had been obtained as 4 to 200 m^2/s by matching the measured concentration-time curves with the advec- tion-diffusion equation.The turbulent diffusion coe...The effective diffusion coefficients in mine ventilation-flows had been obtained as 4 to 200 m^2/s by matching the measured concentration-time curves with the advec- tion-diffusion equation.The turbulent diffusion coefficients in the simple airways have good agreement with the equation proposed by Taylor.However,for complex airways in operat- ing mines,the evaluated effective diffusion coefficients in the mines show higher values than that calculated by the Taylor's equation.A numerical simulation model using with movements of discrete particles dosed into ventilation flows has been developed to simu- late diffusion phenomena of gas or dust in mine airways.Numerical simulations had been conducted on distribution of tracers in single airways with ordinary profiles of mean velocity velocity fluctuations and Reynolds stress.As one of results,long band of diffused particles is obtained at the single airway of 600 m in length,and large effective diffusion coefficient is evaluated as 20 m^2/s.展开更多
Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diff...Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diffusion of gas in turbulent bulk flow by utilizing the tracer gas data. This paper discussed about the measurement using tracer gas technique in Cibaliung Underground Mine, Indonesia and the evaluation of effective axial diffusion coefficient, E, by numerical simulation. In addition, a scheme to treat network flow in mine ventilation system was also proposed. The effective axial diffusion coefficient for each airway was evaluated based on Taylor's theoretical equation. It is found that the evaluated diffusion coefficient agrees well with Taylor's equation by considering that the wall friction factor, f, is higher than those for smooth pipe flow. It also shows that the value of effective diffusion coefficient can be inherently determined and the value is constant when matching with other measurements. Furthermore, there are possibilities to utilize the tracer gas measurement data to evaluate the airway friction factors.展开更多
Enargite is typically associated with chalcocite.Owing to the similarity in the flotation behaviors of these minerals,both minerals are reported to concentrate in the conventional flotation circuit.However,inorganic a...Enargite is typically associated with chalcocite.Owing to the similarity in the flotation behaviors of these minerals,both minerals are reported to concentrate in the conventional flotation circuit.However,inorganic arsenic in enargite can decrease the copper concentrate quality and increase the operating cost of processing this concentrate.Separating these minerals is important for cleaner copper production to avoid these effects.In this context,this study investigated the effect of hydrogen peroxide(H_(2)O_(2))treatment on the flotation behavior of chalcocite and enargite.Flotation tests of pure and mixed minerals indicated that H_(2)O_(2)treatment reduced the floatability of chalcocite and enargite by forming sulfate and copper hydroxide on their surfaces.Despite the detrimental effect of the H_(2)O_(2)treatment,there was a narrow window of H_(2)O_(2)concentration for separating both minerals,in which enargite floated and chalcocite was depressed.This selective flotation behavior was caused by the rapid adsorption of potassium amyl xanthate(KAX)and lower surface oxidation of enargite compared with that of chalcocite.展开更多
The size distribution of a muck pile depends not on only the blasting standard but also on the mechanical properties,joint system,and crack density of the rock mass. As,the cracks in the rock masses are especially hea...The size distribution of a muck pile depends not on only the blasting standard but also on the mechanical properties,joint system,and crack density of the rock mass. As,the cracks in the rock masses are especially heavily developed at the limestone quar- ries in Japan,they,along with the joints,have a large impact on the effects of blasting, such as the size of the muck pile.Therefore,if the joint system and/or crack density in a rock mass can be determined and quantitatively evaluated,the blasting operation can be conducted more effectively,efficiently and safely.However,guidelines for designing ap- propriate blasting standards based on the rock mass conditions have not yet been scien- tifically developed.Therefore,blasting tests were conducted on different mines and faces, under different geological conditions and blasting standards,in order to determine the im- pacts of each factor on the effects of blasting.Summarized the results of a series of blast- ing tests and described the impacts of geological conditions on the size of the muck pile produced by blast.展开更多
In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, p...In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, pipe jacking, and shield methods. In recent years, a new pipe jacking method has been established that can be adapted to 20 m below the ground or more. Using this method, the drivage machine and the jacking pipe continue to move an underground until the completion of the driving. Therefore an over-cutting area (so-called tail-void) must be formed to lower the friction between the ground and the pipe. The tail-void is filled with lubrications. However, because the stress release from the ground continues to advance when the tail-void is formed, hence there are some challenges required to cope with the stability of the surrounding ground. In order to utilize the pipe jacking method in the deeper strata layers, the theory, analysis and installation of tail-void have to be systemized, and such systematic data must be stored. Therefore, the conditions of tail-void in the deep pipe jacking method are discussed using numerical analyses.展开更多
基金Financial support assistance from Global-Centre of Excellent (GCOE) program Kyushu University
文摘We report for the first time the geochemistry of rare earth elements(REE) in the weathered crusts of I-type and calc-alkaline to high-K(shoshonitic) granitic rocks at Mamasa and Palu region, Sulawesi Island, Indonesia. The weathered crusts can be divided into horizon A(lateritic profile) and B(weathered horizon). Quartz, albite, kaolinite, halloysite and montmorrilonite prevail in the weathered crust. Both weathered profiles show that the total REE increased from the parent rocks to the horizon B but significantly decrease toward the upper part(horizon A). LREE are enriched toward the upper part of the profile as shown by La/YbN value. However, HREE concentrations are high in horizon B1 in Palu profile. The total REE content of the weathered crust are relatively elevated compared to the parent rocks, particularly in the lower part of horizon B in Mamasa profile and in horizon B2 in Palu profile. This suggests that REE-bearing accessory minerals may be resistant against weathering and may remain as residual phase in the weathered crusts. The normalized isocon diagram shows that the mass balance of major and REE components between each horizon in Mamasa and Palu weathering profile are different. The positive Ce anomaly in the horizon A of Mamasa profile indicated that Ce is rapidly precipitated during weathering and retain at the upper soil horizon.
文摘The demand for specific earth retaining wall method is increasing, along with the advancement and overcrowding of underground space use, such as the?presence of close structures, in an urban area. The method is named stepped-twin?retaining wall. The feature of this method is to have inner and outer retaining walls and excavate the ground by two-step in order to minimize the effect of the excavation on neighboring existing structures. However, the design of the earth retaining wall is currently carried out by individual engineers based on their own experience. Therefore, it is crucial that the standard method of retaining wall using a two-step construction is established. As the first step toward the standardization, evaluation of factors affecting the ground behavior of the earth retaining wall was carried out. In particular, we picked up four major considerable factors, which are horizontal distance between the outer and inner walls, depth of outer wall embedment, mechanical properties of soil. The evaluation was done by using two dimensional FEM analysis and the results were summarized to make clear the effect of each factor.
文摘There are many earthquakes in Japan. If a large earthquake were to occur, it is necessary to consider how pipelines such as: gas, sewage, telecommunications, and so on are restored quickly. At that time, damaged gas pipelines are very dangerous because fire in large areas could be caused by the leakage of gas from the damaged pipeline. Accordingly, it is necessary for gas companies to stop the supply of gas to houses over a large area. Once the gas supply is stopped, there is a considerable amount of time to repair the pipelines over the area. For this reason, a quick method for restoring damaged gas pipelines would be useful after an earthquake. Recently, we have been developing new flash setting material for the damaged gas pipeline by an injection into the house connection of gas when the gas supply is stopped quickly in an emergency. From these points of view, in order to clarify to what degree the contents of flash settling material affect the properties of the injected fly ash mixture causing heavy damage to the gas pipeline in an earthquake, different combinations of fly ash, chemical agents and water were considered in several experiments.
文摘This study examines the behavior of trace- and rare-earth elements (REE) in different hydrothermal alteration facies (silicic, advanced argillic and argillic) of Cijulang high-sulfidation epithermal gold deposit, West Java, Indonesia. The results of the study indicate that remarkable differences in the behavior of trace elements and REE are observed in the studied alteration facies. All REE in the silicic facies are strongly depleted. In advanced argillic facies, Heavy rare-earth elements (HREE) are strongly depleted whereas light rare earth elements (LREE) are quite enriched. REE concentrations in the argillic facies show little or no variation with respect to fresh rock counterparts. A strong depletion of REE in the silicic facies is likely to be favored by the highly acidic nature of the hydrothermal fluids, the abundance of complexing ions such as Cl ˉ, F ˉ, and in the hydrothermal solutions and the absence of the secondary minerals that can fix the REE in their crystal structures. An apparent immobility of LREE in advanced argillic facies is possibly due to the presence of alunite. The immobility of REE in the argillic facies suggests the higher pH of the fluids, the lower water/rock ratios and the presence of the phyllosilicates minerals. -
基金supported by the Australian Coal Industry's Research Program(ACARP)(C29048).
文摘Minor errors in the spoil deposition process,such as placing stronger materials with higher shear strength over weaker ones,can lead to potential dump failure.Irregular deposition and inadequate compaction complicate coal spoil behaviour,neces-sitating a robust methodology for temporal monitoring.This study explores using unmanned aerial vehicles(UAV)equipped with red-green-blue(RGB)sensors for efficient data acquisition.Despite their prevalence,raw UAV data exhibit temporal inconsistency,hindering accurate assessments of changes over time which could be attributed to radiometric errors.To this end,the study introduces an empirical line calibration with invariant targets(ELC-IT),for precise calibration across diverse scenes,particularly in the context of UAV imagery used to monitor the evolving nature of spoil dumps.To evaluate the effec-tiveness of this calibration approach,accuracy assessment of an object-based classification is conducted on both calibrated and uncalibrated data.This classification involves several steps:performing segmentation,carrying out feature extraction,and integrating the extracted features and ground truth labels collected over the time period of UAV image capture into machine learning pipelines.Calibrated RGB data exhibit a substantial performance advantage,achieving a 90.7%overall accuracy for spoil pile classification using ensemble(subspace discriminant),representing a noteworthy 7%improvement compared to classifying uncalibrated data.The study highlights the critical role of data calibration in optimising UAV effectiveness for spatio-temporal mine dump monitoring.These findings play a crucial role in informing and refining sustainable management practices within the domain of mine waste management.
基金Project(52409132) supported by the National Natural Science Foundation of ChinaProject(ZR2024QE018) supported by the Natural Science Foundation of Shandong Province,China+2 种基金Project(BK20240431) supported by Basic Research Program of Jiangsu,ChinaProject(SNKJ2023A07-R14) supported by the Major Key Technical Research Projects of Shandong Energy Group,ChinaProject(2024M751813) supported by China Postdoctoral Science Foundation。
文摘Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process.
基金financially supported by the China Scholarship Council(CSC)。
文摘Mine filling materials urgently need to improve mechanical properties and achieve low-carbon transformation.This study explores the mechanism of the synergistic effect of optimizing aggregate fractal grading and introducing CO_(2)nanobubble technology to improve the performance of cement-fly ash-based backfill materials(CFB).The properties including fluidity,setting time,uniaxial compressive strength,elastic modulus,porosity,microstructure and CO_(2)storage performance were systematically studied through methods such as fluidity evaluation,time test,uniaxial compression test,mercury intrusion porosimetry(MIP),scanning electron microscopy-energy dispersive spectroscopy analysis(SEM-EDS),and thermogravimetric-differential thermogravimetric analysis(TG-DTG).The experimental results show that the density and strength of the material are significantly improved under the synergistic effect of fractal dimension and CO_(2)nanobubbles.When the fractal dimension reaches 2.65,the mass ratio of coarse and fine aggregates reaches the optimal balance,and the structural density is greatly improved at the same time.At this time,the uniaxial compressive strength and elastic modulus reach their peak values,with increases of up to 13.46%and 27.47%,respectively.CO_(2)nanobubbles enhance the material properties by promoting hydration reaction and carbonization.At the microscopic level,CO_(2)nanobubble water promotes the formation of C-S-H(hydrated calcium silicate),C-A-S-H(hydrated calcium aluminium silicate)gel and CaCO_(3),which is the main way to enhance the performance.Thermogravimetric studies have shown that when the fractal dimension is 2.65,the dehydration of hydration products and the decarbonization process of CaCO_(3)are most obvious,and CO_(2)nanobubble water promotes the carbonization reaction,making it surpass the natural state.The CO_(2)sequestration quality of cement-fly ash-based materials treated with CO_(2)nanobubble water at different fractal dimensions increased by 12.4wt%to 99.8wt%.The results not only provide scientific insights for the design and implementation of low-carbon filling materials,but also provide a solid theoretical basis for strengthening green mining practices and promoting sustainable resource utilization.
基金supported by the China Schorlarship Council (CSC)the Global Center of Excellence (GCOE) in Novel Carbon Resource Sciences, Kyushu Universitysupported by the Zhaokalong Mine, Qinghai, China
文摘The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.
文摘Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be used to recover this coal. The use of highwall mining systems has increasingly come into play in the US and Australia. However, it is not common in Indonesia. Moreover, Indonesia coal measure is categorized as weak geological condition. Some problems are likely to arise during the application of the highwall mining system for example instability of openings and highwalls due to the roof and pillar failures. Therefore, study of highwall mining system application in Indonesia is needed in order to increase the recovery rate of coal mining in Indonesia. This paper described the characteristics of the highwa!l mining system and discussed the appropriate highwall mining system application in weak geological condition, Indonesia. From the results of a series of laboratory tests and numerical analyses, it can be concluded that the stability of pillars and mine openings in auger mining systems is much higher than that in CHM and an auger mining system is suitable for such as very weak/poor strata conditions. Moreover, the application of backfilling system is very effective for improvement of the stability of pillar and openings.
基金This work was supported by the National Natural Science Foundation of China,NSFC(Nos.U1803118 and 51974296)and the China Scholarship Council(CSC)(award to Fanfei Meng for PhD period at Kyushu University).
文摘Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure.
文摘Painan coals of West Sumatra were selected as semi-anthracitic coal sample for studying the physicochemical properties such as measurement, evaluation and description of the changes of surface characteristic of coal sample and their oxidation in the atmospheric air at a temperature ranging from 105 to 400 ℃ for 30 min. Several methods are adopted to analyze and discuss several phenomena of the oxidized Painan coal surface during oxidation process for the change in the physicochemical properties as determined by Atomic Force Microscope (AFM), contact angle, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses as well as other supporting analytical equipment. AFM analyses revealed some changes in adhesion force and surface morphology with more adhesion force available between 0.6 and 8.6 nN on polished coal surfaces due to the increased oxidation temperature. The study revealed that the extent of hydrophobicity of coal surface decreased with the increased of oxidation temperature expressed as contact angles at about 80° and 20°. Another phenomenon occurred during the experiment was hydrophilicity index of coal surface increase at approximately 1.3 and 2.9. Oxidation of coal that occurred with increased temperature also indicated an increase in oxygen content from 3.8% to 22.9 wt%. Increased oxygen functional group also noted that oxidation of coal took place during the treatment. We also found that oxidation treatment also affected the combustion properties of coal: decreasing ignition temperature between 452.9 and 317.6, lowering the reactivity of coal at maximum combustion rate temperature, and reflecting their char characteristics as burnt out, ranging from 652.3 to 648.5 ℃.
基金the stuff of National Research of Astronomy and Geophysics,Egypt for their continuous support and help
文摘The Gulf of Suez region is one of the most interesting geothermal areas in Egypt because of the high temperatures of its springs.The eastern and western shores of the Gulf of Suez are characterized by superficial thermal manifestations including a cluster of hot springs with varied temperatures.Variations of deuterium and oxygen-18 concentrations in thermal waters have been used to aid in describing the source of recharge in the Gulf of Suez hot springs.Isotope and geochemical data for the Gulf of Suez thermal waters suggest that recharge to the hot springs may not be entirely from the Gulf of Suez water,but possibly from the meteoric water that comes from areas of higher altitude surrounding the hot springs.
文摘This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result of overburden excavation.The excessively acidic condition inhibits plant growth due to the dissolution of harmful elements,such as Al,Fe,and Mn.Fly ash,an alkaline byproduct of coal combustion generated in thermal power plants is expected to be adopted to ameliorate acidic soils.However,the mixing ratio of fy ash must be considered because excessive addition of fy ash can have a negative impact on plant growth due to its physical/chemical properties.The pot trials using Acacia mangium demonstrate the evolution of plant growth with a 5%–10%addition of fy ash into acidic soil.When the acidic soil has a high potential for metal dissolution,the metal ions leached from the acidic soil are large,making it difcult to improve plant growth due to osmotic and ionic stress.This work suggests that the efects of fy ash on metal ions leached from the soil have to be considered for the amelioration of acidic soil.
基金This work was co-financed by the National Natural Science Foundation of China(Grant No.41502067)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUG150612)+1 种基金supported by Australian Research Council Discovery funding scheme(DP160102427)a Curtin Research Fellowship
文摘Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysis by LA-(MC)-ICPMS and conventional(U-Th)/He analysis,all applied to single zircon crystals,in an attempt to constrain the origin and timing of world-class Sb(Au-Hg) deposits in Banxi(South China).Zircon separated from a quartz-stibnite ore and an altered country rock samples revealed similar U-Pb age spectra defining two major populations-Paleoproterozoic(~1900-2500 Ma) and Neoproterozoic(~770 Ma),which are characterized by variable εHf(t) values(-10.7 to 9.1 and-16.5 to 11.2,respectively) and Hf crustal model ages(TDMC)(2.48 to 3.24 Ga and 0.97 to 2.71 Ga,respectively).The U-Pb age and Hf isotopic features of the zircons are consistent with the Banxi Group in the region,indicating that the zircons involved in the low-temperature hydrothermal system were originally from the Banxi Group country rocks.Thirty-three mineralization-related zircon crystals yielded a mean(U-Th)/He age of 123.8±3.8 Ma,which is interpreted to represent the timing of the latest low-temperature mineralization stage of the Banxi Sb deposit.The combined U-Pb,Lu-Hf and(U-Th)/He data suggest that Precambrian basement rocks were the major contributors to the low-temperature mineralization,and that Early Cretaceous(130-120 Ma) could be the most important ore-forming epoch for the Sb deposits in South China.This study also demonstrates the analytical feasibility of integrated U-Pb-Lu-Hf-(U-Th)/He "triple-dating",all applied to single zircon crystals.This approach reveals the full evolution of zircon,from its origin of the magmatic source,through its crystallization and low-temperature cooling.Although this study demonstrates the usefulness of this integrated approach in dating low-temperature mineralization,it has great potential for zircon provenance and other studies that may benefit from the large amount of information that can be extracted from single zircon crystals.
文摘It is often required to know which roadway (adjustment roadway) resistances and how much values of the resis- tances should be changed to make the airflow rates in roadways (target roadways) to certain required values in the practice of mine ventilation. In this case, the airflow rates of the target roadways and the resistances of the roadways other than the ad- justment roadways are the given conditions and the resistances of the adjustment roadways are the solutions to be found. No straightforward method to solve the problem has been found up to now. Therefore, trial and error method using the ventilation network analysis program is utilized to solve the problem so far. The method takes long calculation time and the best answer is not necessarily obtained. The authors newly defined "airflow element" as an element of the ventilation network analysis. The resistances that satisfy the airflow requirements can be calculated straight forwardly by putting the function of the airflow element into the ventilation network analysis. The air power required for the ventilation can be minimized while meeting the airflow requirements by the advanced application of the method. The authors made the computer program fulfill the method. The program was applied to actual ventilation network and it was found that the method is very practical and the time required for the analysis is short.
基金the National Natural Science Foundation of China(50375026)
文摘The effective diffusion coefficients in mine ventilation-flows had been obtained as 4 to 200 m^2/s by matching the measured concentration-time curves with the advec- tion-diffusion equation.The turbulent diffusion coefficients in the simple airways have good agreement with the equation proposed by Taylor.However,for complex airways in operat- ing mines,the evaluated effective diffusion coefficients in the mines show higher values than that calculated by the Taylor's equation.A numerical simulation model using with movements of discrete particles dosed into ventilation flows has been developed to simu- late diffusion phenomena of gas or dust in mine airways.Numerical simulations had been conducted on distribution of tracers in single airways with ordinary profiles of mean velocity velocity fluctuations and Reynolds stress.As one of results,long band of diffused particles is obtained at the single airway of 600 m in length,and large effective diffusion coefficient is evaluated as 20 m^2/s.
基金the financial support of this work by Japan Ministry of Education, Culture, Sport, Science and Technology and Kyushu University’s Global COE program
文摘Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diffusion of gas in turbulent bulk flow by utilizing the tracer gas data. This paper discussed about the measurement using tracer gas technique in Cibaliung Underground Mine, Indonesia and the evaluation of effective axial diffusion coefficient, E, by numerical simulation. In addition, a scheme to treat network flow in mine ventilation system was also proposed. The effective axial diffusion coefficient for each airway was evaluated based on Taylor's theoretical equation. It is found that the evaluated diffusion coefficient agrees well with Taylor's equation by considering that the wall friction factor, f, is higher than those for smooth pipe flow. It also shows that the value of effective diffusion coefficient can be inherently determined and the value is constant when matching with other measurements. Furthermore, there are possibilities to utilize the tracer gas measurement data to evaluate the airway friction factors.
基金Sumitomo Metal Mining Co.,Ltd.,Japan International Cooperation Agency(JICA),and a Grant-inAid for Science Research(JSPS KAKENHI)from the Japan Society for the Promotion of Science(JSPS)(Nos.JP22K14636,JP22H00310 and JP19H02659)This work was partly supported by Advanced Research Infrastructure for Materials and Nanotechnology(No.JPMXP1222KU1009)in Japan sponsored by the Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japan.
文摘Enargite is typically associated with chalcocite.Owing to the similarity in the flotation behaviors of these minerals,both minerals are reported to concentrate in the conventional flotation circuit.However,inorganic arsenic in enargite can decrease the copper concentrate quality and increase the operating cost of processing this concentrate.Separating these minerals is important for cleaner copper production to avoid these effects.In this context,this study investigated the effect of hydrogen peroxide(H_(2)O_(2))treatment on the flotation behavior of chalcocite and enargite.Flotation tests of pure and mixed minerals indicated that H_(2)O_(2)treatment reduced the floatability of chalcocite and enargite by forming sulfate and copper hydroxide on their surfaces.Despite the detrimental effect of the H_(2)O_(2)treatment,there was a narrow window of H_(2)O_(2)concentration for separating both minerals,in which enargite floated and chalcocite was depressed.This selective flotation behavior was caused by the rapid adsorption of potassium amyl xanthate(KAX)and lower surface oxidation of enargite compared with that of chalcocite.
文摘The size distribution of a muck pile depends not on only the blasting standard but also on the mechanical properties,joint system,and crack density of the rock mass. As,the cracks in the rock masses are especially heavily developed at the limestone quar- ries in Japan,they,along with the joints,have a large impact on the effects of blasting, such as the size of the muck pile.Therefore,if the joint system and/or crack density in a rock mass can be determined and quantitatively evaluated,the blasting operation can be conducted more effectively,efficiently and safely.However,guidelines for designing ap- propriate blasting standards based on the rock mass conditions have not yet been scien- tifically developed.Therefore,blasting tests were conducted on different mines and faces, under different geological conditions and blasting standards,in order to determine the im- pacts of each factor on the effects of blasting.Summarized the results of a series of blast- ing tests and described the impacts of geological conditions on the size of the muck pile produced by blast.
文摘In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, pipe jacking, and shield methods. In recent years, a new pipe jacking method has been established that can be adapted to 20 m below the ground or more. Using this method, the drivage machine and the jacking pipe continue to move an underground until the completion of the driving. Therefore an over-cutting area (so-called tail-void) must be formed to lower the friction between the ground and the pipe. The tail-void is filled with lubrications. However, because the stress release from the ground continues to advance when the tail-void is formed, hence there are some challenges required to cope with the stability of the surrounding ground. In order to utilize the pipe jacking method in the deeper strata layers, the theory, analysis and installation of tail-void have to be systemized, and such systematic data must be stored. Therefore, the conditions of tail-void in the deep pipe jacking method are discussed using numerical analyses.