Bemisia tabaci is a polyphagous herbivore that feeds on a wide range of horticultural and ornamental crops cultivated under diverse ecological zones. In Sierra Leone, B. tabaci is found to infest a wide range of veget...Bemisia tabaci is a polyphagous herbivore that feeds on a wide range of horticultural and ornamental crops cultivated under diverse ecological zones. In Sierra Leone, B. tabaci is found to infest a wide range of vegetable crops by directly feeding on phloem sap thereby inducing physiological disorders, and also serve as a vector to gemini viruses. Invariably the destructive feeding of B. tabaci affects the productivity and aesthetic values of vegetables and other horticultural crops and hence is considered a serious economic pest. A bioassay experiment was carried out by rearing B. tabaci populations on four vegetable crops under controlled laboratory conditions to determine its life table and demographic parameters. Results showed that the intrinsic rate of growth which measures the population size and growth pattern was highest for populations reared on tomato crops with the following values: rm 0.145 female female−1 day−1, the gross reproduction rate (Ro), and finite growth rate λ were highest for population reared on tomato, correspondingly the development period from egg-adult emergence was shortest with a value of 26 d. Conversely, the computed demographical parameters rm, λ and Ro for the population reared on sweet pepper were 0.106 female female−1 day−1 respectively, with a corresponding development period egg-adult emergence as 36d. The computed biological parameters for okra and garden egg varied with intermediary values between tomato and pepper host materials. The survivorship rates were quite significant for the smaller instars (Instars 1-III) with over 80% surviving to pre-pupa and pupa stage for the populations reared for all the test materials. High mortality was noticed for the pre-pupa and pupa stages as their survival rates were significantly low compared to the high survival rates of the smaller instars. Less than 50% of pupae failed to emerge to adults except for populations reared on tomato test materials where 52% emerged to adults. The study indicated tomato as the most suitable host among the four vegetable crops. Although life table and demographic parameters are invaluable information for forecasting pest populations and help in designing pest management efforts, further investigations such as the economic threshold and economic injury levels of B. tabaci population are requisite decision tools for sound pest management decisions of B. tabaci on these vegetable crops. The information obtained from this investigation would be quite relevant for extension service and pest management practitioners where mixed vegetable farming is a common practice.展开更多
Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a f...Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a fallow-winter wheat (Triticum aestivum L.) rotation to several cover crop-winter wheat rotations under rainfed and irrigated conditions in the semiarid US High Plains. Experiments were carried out at two sites, Sidney in Nebraska, and Akron in Colorado, USA, with three times of soil sampling in 2012--2013 at cover crop termination, wheat planting, and wheat maturity. The experiments included four single-species cover crops, a 10-species mixture, and a fallow treatment. The variables measured were soil C and nitrogen (N), soil community structure by fatty acid methyl ester (FAME) profiles, and soil β-glucosidase,β-glucosaminidase, and phosphodiesterase activities. The fallow treatment, devoid of living plants, reduced the concentrations of most FAMEs at cover crop termination. The total FAME concentration was correlated with cover crop biomass (R = 0.62 at Sidney and 0.44 at Akron). By the time of wheat planting, there was a beneficial effect of irrigation, which caused an increase in myeorrhizal and protozoan markers. At wheat maturity, the cover crop and irrigation effects on soil FAMEs had subsided, but irrigation had a positive effect on the β-glucosidase and phosphodiesterase activities at Akron, which was the drier of the two sites. Cover crops and irrigation were slow to impact soil C concentration. Our results show that cover crops had a short-lived effect on soil microbial communities in semiarid wheat-based rotations and irrigation could enhance soil enzyme activity. In the semiarid environment, longer time spans may have been needed to see beneficial effects of cover crops on soil microbial community structure, soil enzyme activities, and soil C sequestration.展开更多
Reduced early crop growth and limited branching are amongst yield limiting factors of linola. Field response of seed priming treatments viz. 50 mmol L^-1 salicylic acid (SA), 2.2% CaCl2 and 3.3% moringa leaf extract...Reduced early crop growth and limited branching are amongst yield limiting factors of linola. Field response of seed priming treatments viz. 50 mmol L^-1 salicylic acid (SA), 2.2% CaCl2 and 3.3% moringa leaf extract (MLE) including untreated dry and hydropriming controls was evaluated on early crop growth and yield performance of linola. Osmopriming with CaCl2 reduced emergence time and produced the highest seedling fresh and dry weights including Chl. a contents. Osmopriming with CaCl2 reduced crop branching and flowering and maturity times and had the maximum plant height, number of branches, tillers, pods and seeds per pod followed by MLE. Increase in seed weight, biological and seed yields was 9.30, 34.16 and 39.49%, harvest index (4.12%) and oil contents (13.39%) for CaCl2 osmopriming. Positive relationship between emergence and seedling vigor traits, 100-seed weight, seed yield with maturity time, 100-seed weight and seed yield were found. The study concludes that seed osmopriming with CaC12 or MLE can play significant role to improve early crop growth and seed yields of linola.展开更多
Rice-wheat cropping system (RWCS) is one of the most important cropping systems in South Asia. However, sustainability of this system is under threat owing to several factors, of which deficiency of micronutrients par...Rice-wheat cropping system (RWCS) is one of the most important cropping systems in South Asia. However, sustainability of this system is under threat owing to several factors, of which deficiency of micronutrients particularly zinc (Zn), boron (B) and manganese (Mn) is one of the major problems. Continuous rotation of rice and wheat, imbalanced fertilizer use and little/no use of micronutrient-enriched fertilizers induce deficiencies of Zn, B and Mn in the RWCS of South Asia. Here we review that (i) imbalanced fertilizer use and organic matter depletion deteriorate soil structure resulting in low efficiency of applied macro- and micro-nutrients in RWCS.(ii) The micronutrients (Zn, B and Mn) are essentially involved in metabolism of rice and wheat plants, including chlorophyll synthesis, photosynthesis, enzyme activation and membrane integrity.(iii) Availability and uptake of Zn, B and Mn from rhizosphere depend on the physico-chemical soil properties (which differ under aerobic and anaerobic conditions) including soil pH, soil organic matter, soil moisture and interaction of these micronutrients with other nutrients.(iv) Plant ability to uptake and utilize the nutrients is affected by several plant factors such as root architecture, root hairs, transport kinetics parameter and root exudates.(v) Crop management and application of these microelements can help correct the micronutrients deficiency and enhance their grain concentration.展开更多
A 12-year cover crops study on the effects on SOC sequestration, storage, retention and loss and corn and soybean yields was conducted in southern Illinois. The use of cover crops for the maintenance and restoration o...A 12-year cover crops study on the effects on SOC sequestration, storage, retention and loss and corn and soybean yields was conducted in southern Illinois. The use of cover crops for the maintenance and restoration of soil organic carbon (SOC) and soil productivity of previously eroded soils were evaluated. No-till (NT), chisel plow (CP), and moldboard plow (MP) treatment plots with and without cover crops were established in 2001. The plot area was on sloping with a moderately well drained, eroded soil. The average annual corn and soybean yields were statistically the same for NT, CP, and MP systems with and without cover crops. By 2012, the cover crop treatments had more SOC stock than that without cover crops for the same soil layer and tillage treatment. The NT, CP, and MP treatments all sequestered SOC with cover crops. A pre-treatment SOC stock baseline for rooting zone was used to validate the finding that cover crops sequestered SOC in the topsoil, subsoil and root zone of the NT, CP and MP treatments during the 12-year study. Additional sequestered SOC was lost as a result of being transported off of the plots and retained in lower slopes, transported to the stream or released to atmosphere.展开更多
Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were...Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.展开更多
Farmers in the highlands of Ethiopia often plant Eucalyptus on their farmlands. However, growing Eucalyptus, especially on farm- lands suitable for crop production has become a great concern due to its alleged long-te...Farmers in the highlands of Ethiopia often plant Eucalyptus on their farmlands. However, growing Eucalyptus, especially on farm- lands suitable for crop production has become a great concern due to its alleged long-term site effects. Our study was conducted at Koga water- shed, Mecha District, northwestern Ethiopia to investigate whether crop- lands afforested with Eucalyptus camaldulensis Dehnh. can be restored for annual crop production after tree harvest. We compared growth and yield of two agricultural crops, barley (Hordeum vulgate L.) and finger millet (Eleusine coracana (L.) Gaertn.), grown in clear-felled stands of E. camaldulensis and continuously cultivated croplands at twelve paired farmlands under a conventional farming system. Plant height and dry matter production were evaluated as indices of crop growth, while grain weight was evaluated as an index of crop yield. Crop growth and yield measurements averaged over all farmlands differed between land-use types. For both crops, plants grown on clear-felled stands were taller than on croplands. Dry matter production and yield were also significantly greater in crops cultivated on clear-felled stands. Cropland aboveground and belowground dry matter productions were lower by 31.8 and 25.4% for barley and 32.8% and 37% for finger millet, respectively. Clear-felled stands gave an average yield of 2.91 t.ha-1 for barley and 3.27 t.ha-1 for finger millet while cropland gave a yield of 1.97 and 2.31 t.ha-1 for barley and finger millet, respectively. Farmers also responded that farm plots on former eucalypt plantations showed greater crop growth and yield thandid continuously cultivated croplands. Farmers perceived that Eucalyptus plantations improved soil fertility and they preferred clear-felled stands for crop production and wished to plant Eucalyptus on their farmlands. Our results suggest that conversion of agricultural lands to Eucalyptus plantations can increase post-felling yields of cereal crops.展开更多
The present study, conducted during 2016 and 2017 seasons, aimed to investigate the effect of IBA on rooting of Piper betle L. stem cuttings (softwood and semi-hardwood). The experiment was undertaken in misting house...The present study, conducted during 2016 and 2017 seasons, aimed to investigate the effect of IBA on rooting of Piper betle L. stem cuttings (softwood and semi-hardwood). The experiment was undertaken in misting house field 2 UPM using the sand media to determine the adventitious roots initiation and development using the histological method. The cuttings were treated with different IBA concentrations (0, 500, 1000, 1500 and 2000 mg/L). The nodes explants were used in the development of a protocol for in vitro propagation of P. betle L., with different concentrations of Clorox with different times of immersion (20% Clorox 10 minutes, 30% Clorox 10 minutes, 20% Clorox 20 minutes, and 30% 20 minutes). In multiplication of the plantlets, Murashige and Skoog (MS) medium with different concentrations of BAP (0, 0.5, 1.0, 2.0 mg/L) were used to investigate the rooting of the explants. The results indicated that the types of the cuttings were different in the rooting capacity and the length of the roots. Moreover, it was found that in comparison with the control treatment, by a rise in the concentrations of the IBA, there was a significant upsurge in the rooting percentage, the root diameter, and the number of the roots. The results indicated that the types of cutting with 1000, 1500 and 2000 mg/L IBA perform better in the root percentage (100%) in the semi hardwood cuttings. The best results, however, were 2000 mg/L IBA in the semi hardwood cuttings, with the number of the roots to be 35.05, and the fresh weight of the roots to be 3.94 g, the dry weight of the roots to be 0.33 g, the length of the roots to be 391.88 cm, the roots diameter to be 1.21 mm, the surface area of the roots to be 121.83 cm2, and the root volume to be 2.99 cm3. Nonetheless, the optimal concentration of Clorox with the time immersion was 20% with the 20-minute immersion time, which produced a shoot induction percentage of 30% dead explants and a mean number of 70.00 shoots per explant and the optimal concentration of benzylaminopurine (BAP) at 1.0 mg/L. It is of note that a shoot induction percentage of 22.29% and a mean number of 4.1% number of auxiliary bud per treatment. P. betle shoots in MS medium without PGR MS (0.0) yielded a good rooting.展开更多
Fields experiments were conducted at the Department of Crop Protection, Faculty of Agriculture, University of Maiduguri Teaching and Research Farm, Maiduguri during 2010 and 2011 cropping seasons to investigate the ef...Fields experiments were conducted at the Department of Crop Protection, Faculty of Agriculture, University of Maiduguri Teaching and Research Farm, Maiduguri during 2010 and 2011 cropping seasons to investigate the effects of intercropping pattern on stem borer pest infestation in pearl millet (Pennisetum glaucum L.) intercropped with ground nut (Arachis hypogea L.). A split-plot design was used to test the intercrop pattern of 1:0 ratio (sole millet), 1:1 ratio (1 millet row to 1 ground nut row), 2:1 ratio (2 millet rows to 1 ground nut row) and 1:2 ratio (1 millet row to 2 ground nut rows). The results obtained showed that the intercrop pattern of 1:2 ratio and 1:1 ratio yielded less stem borer infestation and abundance in pearl millet, and as well supported high panicle weight and grain yield. In addition to recommending either of these two intercropping patterns to pearl millet farmers for more effective stem borer pest management, results further show the need for identification of effective intercropping patterns in other cropping systems.展开更多
High tunnels have been used in the United States for more than 50 years, and growers are encouraged to use them more frequently through government cost-share programs. Research on fruits and vegetable production syste...High tunnels have been used in the United States for more than 50 years, and growers are encouraged to use them more frequently through government cost-share programs. Research on fruits and vegetable production systems has focused on high value crops such as tomato, salad greens, and several fruit crops. Maintaining soil quality and controlling insects and diseases are all issues that growers face. This review looks at current research on these issues as well as economic considerations addressed in the scientific literature. Global statistics and reports are also reviewed that complement the North American studies. Gaps in our understanding are identified, and directions for future research are suggested.展开更多
The root appears to be the most relevant organ for breeding drought stress tolerance.However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially ...The root appears to be the most relevant organ for breeding drought stress tolerance.However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially in crop plants. We performed a meta-analysis of expression divergence of essential drought-inducible genes and analyzed their association with cis-elements in model crops and major cereal crops. Our analysis of42 selected drought-inducible genes revealed that these are expressed primarily in roots,followed by shoot, leaf, and inflorescence tissues, especially in wheat. Quantitative real-time RT-PCR analysis confirmed higher expression of TaDREB2 and TaAQP7 in roots,correlated with extensive rooting and drought-stress tolerance in wheat. A promoter scan up to 2 kb upstream of the translation start site using phylogenetic footprinting revealed708 transcription factor binding sites, including drought response elements(DREs), auxin response elements(Aux REs), MYCREs/MYBREs, ABAREs, and ERD1 in 19 selected genes.Interestingly, these elements were organized into clusters of overlapping transcription factor binding sites known as homotypic clusters(HCTs), which modulate drought physiology in plants. Taken together, these results revealed the expression preeminence of major drought-inducible genes in the root, suggesting its crucial role in drought adaptation. The occurrence of HCTs in drought-inducible genes highlights the putative evolutionary modifications of crop plants in developing drought adaptation. We propose that these DNA motifs can be used as molecular markers for breeding drought-resilient cultivars, particularly in the cereal crops.展开更多
Decision support system for agro-technology transfer (DSSAT), OIL CROP-SUN Model was used to stimulate the phenology, growth, yield of different two sunflower hybrids. i.e. Hysun-33 and S-78 by applying different nitr...Decision support system for agro-technology transfer (DSSAT), OIL CROP-SUN Model was used to stimulate the phenology, growth, yield of different two sunflower hybrids. i.e. Hysun-33 and S-78 by applying different nitrogen levels. The effect of nitrogen (N) on growth and yield components of different sunflower (Helianthus annuus L.) hybrids were evaluated under agro-climatic conditions of Sargodha, Pakistan during spring 2013. The experiment was laid out in a randomized complete block design with split plot arrangement having three replications, keeping cultivars in the main plots and nitrogen levels (0, 45, 90,135 and 180 kg/ha) in sub plots. OIL CROP-SUN Model showed that the model was able to simulate the growth and yield of sunflower with an average of 10.44 error% between observed and simulate achene yield (AY). The result of simulation indicates that nitrogen rate of 180 kg/ha produced highest achene yield in S-78 hybrid as compared to other treatments and Hysun-33 cultivar.展开更多
Field experiments were conducted at the experimental farm Cocoa Re-search Institute of Nigeria (CRIN) Sub-Station, Ochaja, in the Southern Guinea Savannaagro ecological zone of Nigeria to examine uptake and use effici...Field experiments were conducted at the experimental farm Cocoa Re-search Institute of Nigeria (CRIN) Sub-Station, Ochaja, in the Southern Guinea Savannaagro ecological zone of Nigeria to examine uptake and use efficien-cies of nutrients by Sesame and Bambara nut alley crops as influenced by manuring in a Cashew-based intercropping system. Experimental treatments were based on responses of sole and intercrop mixtures of Sesame and Bam-bara nut alley crops to Cocoa Pod Husk (CPH), pelletized organic fertilizer and NPK fertilizer in a cashew-based intercropping system. Data were collected on the growth and yield variables of the alley crops. Highest nitrogen harvest in-dex (NHI) for seed and leaf of alley crops were obtained from un-manure treated plants. Cocoa pod husk (CPH) significantly enhanced P uptake com-pared with other fertilizers applied. CPH improved Na, Ca, Mg Zn, Cu, P, K and carbohydrate in the leaves and Ca, Mg, Zn, Fe, Cu, crude fibre and car-bohydrate contents of seeds of sole crops while Sesame + Bambara had en-hanced contents of N, Ca, Mg, Zn, Cu, P, N, K, moisture, protein, and crude fi-bre, crude protein, moisture content in leaves. The effects of NPK were signifi-cant for N, K Ca, Zn, Fe, Cu, P, moisture and crude fibre, while in the un-manure (control) plots influenced N, fat and protein and nitrogen harvest index (NHI) of leaf and seeds. CPH and NPK fertilizers enhanced nutrient up-take and nitrogen harvest index of alley crops. Nutrient uptake was similar for the varieties of Sesame and Bambara nut as affected by the application of 4.84 and 9.68 Kg pelletized organic fertilizer. Sole Bambara had higher N and K concentration in leaves compared with Bambara +Sesame. In addition, sole Bambara had higher values of Physiology efficiency (PE), and fertilizer use ef-ficiency (FAE) compared to the mixed crops of Bambara + sesame. However, physiology efficiency (PE), and fertilizer use efficiency (FAE) were significantly lower for Bambara + Sesame. The un-manure plants had enhanced N, P and K uptake. Varietal effects were pronounced for most of the resource use effi-ciency variables measured. The alley crop varieties responded differently to 4.84 and 9.68 kg pelletized fertilizer treatments (Agronomy Efficiency (AE), N-removed at harvest and Internal Utilization Efficiency (IE) and partial fac-tor productivity (PFP)). Sesame variety NCRIBen04E had enhanced AE, N-remove at harvest, IE and PFP while variety E8 had significantly higher ap-parent Recovery Efficiency (RE), apparent Recovery Efficiency by difference (RE%), Physiology Efficiency (PE), Utilization Efficiency (UE), and internal Utilization Efficient (IE). Bambara variety TVSu999 had higher IUE, Agron-omy Efficiency (AE), Apparent Recovery Efficiency (RE), Physiology Effi-ciency (PE) and Fertilizer Agronomy using Efficiency respectively (FAE) com-pared to variety TVSu1166. The fertilizers affected most of the indicators of nutrient use efficiency (NUE) measured. The effects were significant on AE, agronomic N-use efficiency (ANUE), RE, UE and PFP. NPK fertilizer enhanced Physiology efficiency (PE) and Partial factor production. NPK fertilizer signifi-cantly enhanced NUE parameters compared to CPH and un-manure. CPH manure significantly influenced RE%, PE and IE. The Internal Utilization Effi-ciency and N-remove at harvest were compared with the un-manure plants (control). The effects of 9.68 kg/plot pelletized fertilizer, were pronounced on Agronomy Efficiency (AE), Apparent Recovery Efficiency by difference (RE%), Physiology Efficiency (PE), Utilization Efficiency (UE), N-removed at harvest and Internal Utilization Efficiency (IE). Similar trends were observed in the responses NUE of Sesame and Bambara manuring. The responses sole crops in terms of RE, PE UE PFP were similar while their intercrop combina-tions had significantly higher AE, RE, UE, PFP and N removed at harvest. Sole Sesame significantly influence Agronomy Efficiency (AE), Utilization Effi-ciency (UE), Internal Efficiency (IE) and Partial Fertilizer Production (PFP) and sole Bambara under NPK fertilizer had enhanced N-removed at harvest and apparent recovery by difference (RE%). Bambara + Sesame under cocoa pod husk (CPH) manure had enhanced apparent recovery efficiency by difference (RE%), fertilizer use efficiency (FAE) and internal utilization efficiency (IE). Sesame variety NCRIBen04E had enhanced Agronomy Efficiency (AE), N-removed at harvest and Internal Utilization Efficiency (IE) under 9.68 kg treatment while variety E8 had higher partial factor productivity (PFP) at 4.84 kg/plot pelletized organic fertilizer.展开更多
This study was conducted to assess the incidence of seed-borne fungi on rice seeds sourced from the major rice growing areas of South-Eastern Nigeria. The rice seeds were collected during the dry seasons between 2009 ...This study was conducted to assess the incidence of seed-borne fungi on rice seeds sourced from the major rice growing areas of South-Eastern Nigeria. The rice seeds were collected during the dry seasons between 2009 and 2010. Four hundred rice seeds randomly collected and surface sterilized by washing in 3% sodium hypochlorite and rinsed two times with sterile distilled water were placed in three circular rings inside the Petri dishes. The incubation was done one after the other for each variety from all the locations. Ten fungi species from eight genera were isolated from the rice seeds in all the rice growing areas of South-Eastern Nigeria. The fungi pathogens vary from one locality to another, as well as the frequency of occurrence. The pathogens isolated include: Fusarium moniliforme, F. solani, F. oxysporium, Aspergillus spp., Botridiploidia spp., Helminthosporium spp., Penicillium spp., Trichoconis padwickii, Curvularia oryzae and Phoma oryzae. Though, there was the presence of some seed-borne fungi in the rice seeds from the areas studied, most of the cultivars experienced up to 90% germination. But some cultivars had very low germination. IR 1416 from Arochukwu and GB90 from Arondiuzogu had less than 1% germination. This study shows that seed-borne organisms are major constraint in rice production in the South-Eastern states of Nigeria as a result of low seed germination stemmed from infestation of fungi organisms in the seeds.展开更多
The US is one of the leading global producers of paper industry with approximately 24 percent of the share of world paper supply. Despite diversity of the feedstock and production methods, C rich papermill biosolids (...The US is one of the leading global producers of paper industry with approximately 24 percent of the share of world paper supply. Despite diversity of the feedstock and production methods, C rich papermill biosolids (PB) is a major byproduct of paper production process. Landfilling is the predominant method of PB management. Increasing landfill cost and its potential environmental consequences have incentivized research and development efforts to find beneficial uses for PB. This sensible option reduces the overall paper production costs and increases environmental sustainability. Pelletization of PB increases its marketability by reducing transportation costs. This greenhouse study was conducted to gain a better understanding of the properties and effects of a recently developed pelletized papermill biosolids (PPB) on bell pepper (Capsicum annuum L.) and soil. Urea and PPB were each applied at four total N rates equivalent to 45, 90, 135, and 180 kg N ha﹣1 and an additional control treatments of 0 N was included. The total C and N concentration in this PPB were 379 and 14 g·kg﹣1 respectively and its C:N ratio was 27.2. Nitrogen treatment significantly (P ≤ 0.0839) influenced pepper height, dry biomass, N concentration, and N uptake. Plant height ranged from 31.2 to 44.4 cm;135 kg·ha﹣1 urea-N and PPB-N produced the tallest and shortest plants respectively. Dry biomass of the pepper that did not receive any N, those treated with urea-N or PPB-N were 5.3, 5.7 - 7.5, and 5.9 - 6.5 g·plant﹣1 respectively. Nitrogen concentration in control treatment (0 N) was 36.4 g·kg﹣1 and that of pepper treated with any N ranged from 32.0 - 40.7 g·kg﹣1. There was an inverse numerical, albeit not always statistically significant, relationship between PPB rate and plant N concentration. Generally, pepper treated with urea removed significantly more N from soil than control or PPB treated pepper. Nitrogen uptake by plants that did not receive any N and those amended with urea or PPB were 194, 229 - 270, and 155 - 164 mg·plant﹣1 respectively. Pepper N uptake and concentration data indicate that higher rates of PPB resulted in immobilization of native soil and PPB-N due to its wide C:N ratio (27.2). Nitrogen treatment significantly influenced soil pH, SOM, total C and N (P > 0.1). Soil organic matter and total C in post-harvest soil samples were 17.4 - 19.4 and 21.9 - 35.0 g·kg﹣1 respectively. The observed increase in soil total C and SOM highlights the potential beneficial use of PPB as a means to improve soil health and sequester C in soil. Narrowing the C:N ratio of PPB, by coapplication or incorporation of the mineral N into the pellets will make it an attractive organic N fertilizer.展开更多
This study sought to establish the compatibility effects of biochar/vermin-compost application on growth and yield of maize and cabbages. Biochar application rate was at 3 to 4% of soil weight. Biochar was mixed in va...This study sought to establish the compatibility effects of biochar/vermin-compost application on growth and yield of maize and cabbages. Biochar application rate was at 3 to 4% of soil weight. Biochar was mixed in various proportions to come up with treatments which were 100% vermicompost, 50/50% biochar: vermicompost, 75/25% biochar: vermicompost and 100% biochar. The experiment was repeated twice and arranged as a completely randomized design and replicated five times. The study established that maize yield increased with application of biochar from 25% to 50%. In the cabbage trial, comparable results in plant height, leaf numbers and final yield was obtained with 100% vermicompost application, 50% and 75% biochar inclusion. When biochar was applied at 100%, noticeable reduction in plant performance was noted. It is recommended to use biochar as a bio-fertiliser at 50/50% biochar: vermicompost in maize and cabbage production.展开更多
Soil water retention is a critical aspect of agricultural management, especially in areas such as the Lower Mississippi River Alluvial Valley that face potential water shortages in the near future. Previous studies ha...Soil water retention is a critical aspect of agricultural management, especially in areas such as the Lower Mississippi River Alluvial Valley that face potential water shortages in the near future. Previous studies have linked changes in soil water retention characteristics to agricultural management practices, especially as they affect the accumulation of soil organic matter (SOM). Therefore, the objective of this study was to determine the relationship between soil water potential and gravimetric soil water content in the top 7.5 cm as affected by nitrogen (N) fertilization/residue level (high and low), residue burning (burning and non-burning), tillage (conventional and no-tillage), and irrigation (irrigated and non-irrigated) after 12 complete cropping cycles in a wheat (Triticum aestivum L.)-soybean [Glycine max (L.) Merr.], double-crop production system in the Delta region of eastern Arkansas using soil wetting curves. The soil investigated was a Calloway silt loam (fine silty, mixed, active, thermic Glossaquic Fraglossudalf). The slope characterizing the relationship between the natural logarithm of the soil water potential and the gravimetric soil water content was only affected (P < 0.05) by the N-fertilization/residue-level treatment, while the intercept was unaffected by any field treatment. Averaged across tillage, burning, and irrigation, soil water contents under the high-exceeded those under low-N-fertilization/residue-level treatment at the same water potential, with the greatest differences observed at water contents > 0.12 g·g-1. Understanding the ways in which alternative residue management practices affect soil water retention characteristics is an important component of conserving irrigation water resources.展开更多
Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to inve...Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended.展开更多
Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton....Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton.To this end,a study was conducted near Tifton,Georgia under a manually-controlled,variable-rate lateral irrigation system using a Scholander pressure chamber approach to measure leaf water potential and impose varying irrigation scheduling treatments during the growing season.ΨPDthresholds were-0.4 MPa(T1),-0.5 MPa(T2),and-0.7 MPa(T3).A winter rye cover crop or conventional tillage were utilized for T1-T3 as well.Results:Reductions in irrigation of up to 10%were noted in this study for the driest threshold(-0.7 MPa)with no reduction in lint yield relative to the-0.4 MPa and-0.5 MPa thresholds.Drier conditions during flowering(2014)limited plant growth and node production,hastened cutout,and decreased yield and WUE relative to 2015.Conclusions:We conclude thatΨPDirrigation thresholds between-0.5 MPa and-0.7 MPa appear to be viable for use in aΨPDscheduling system with adequate yield and WUE for cotton production in the southeastern U.S.Rye cover positively impacted water potential at certain points throughout the growing season but not yield or WUE indicating the potential for rye cover crops to improve water use efficiency should be tested under longer-term production scenarios.展开更多
The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple c...The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple crucial for global food security,possesses six transcription factor superfamilies-AP2/ERF,bHLH,bZIP,MYB,NAC,and WRKY-that function in innate immunity against pathogens.We review their biological functions and regulatory mechanisms in rice immunity.展开更多
文摘Bemisia tabaci is a polyphagous herbivore that feeds on a wide range of horticultural and ornamental crops cultivated under diverse ecological zones. In Sierra Leone, B. tabaci is found to infest a wide range of vegetable crops by directly feeding on phloem sap thereby inducing physiological disorders, and also serve as a vector to gemini viruses. Invariably the destructive feeding of B. tabaci affects the productivity and aesthetic values of vegetables and other horticultural crops and hence is considered a serious economic pest. A bioassay experiment was carried out by rearing B. tabaci populations on four vegetable crops under controlled laboratory conditions to determine its life table and demographic parameters. Results showed that the intrinsic rate of growth which measures the population size and growth pattern was highest for populations reared on tomato crops with the following values: rm 0.145 female female−1 day−1, the gross reproduction rate (Ro), and finite growth rate λ were highest for population reared on tomato, correspondingly the development period from egg-adult emergence was shortest with a value of 26 d. Conversely, the computed demographical parameters rm, λ and Ro for the population reared on sweet pepper were 0.106 female female−1 day−1 respectively, with a corresponding development period egg-adult emergence as 36d. The computed biological parameters for okra and garden egg varied with intermediary values between tomato and pepper host materials. The survivorship rates were quite significant for the smaller instars (Instars 1-III) with over 80% surviving to pre-pupa and pupa stage for the populations reared for all the test materials. High mortality was noticed for the pre-pupa and pupa stages as their survival rates were significantly low compared to the high survival rates of the smaller instars. Less than 50% of pupae failed to emerge to adults except for populations reared on tomato test materials where 52% emerged to adults. The study indicated tomato as the most suitable host among the four vegetable crops. Although life table and demographic parameters are invaluable information for forecasting pest populations and help in designing pest management efforts, further investigations such as the economic threshold and economic injury levels of B. tabaci population are requisite decision tools for sound pest management decisions of B. tabaci on these vegetable crops. The information obtained from this investigation would be quite relevant for extension service and pest management practitioners where mixed vegetable farming is a common practice.
文摘Cover crops can have beneficial effects on soil microbiology by increasing carbon (C) supply, but these beneficial effects can be modulated by precipitation conditions. The objective of this study was to compare a fallow-winter wheat (Triticum aestivum L.) rotation to several cover crop-winter wheat rotations under rainfed and irrigated conditions in the semiarid US High Plains. Experiments were carried out at two sites, Sidney in Nebraska, and Akron in Colorado, USA, with three times of soil sampling in 2012--2013 at cover crop termination, wheat planting, and wheat maturity. The experiments included four single-species cover crops, a 10-species mixture, and a fallow treatment. The variables measured were soil C and nitrogen (N), soil community structure by fatty acid methyl ester (FAME) profiles, and soil β-glucosidase,β-glucosaminidase, and phosphodiesterase activities. The fallow treatment, devoid of living plants, reduced the concentrations of most FAMEs at cover crop termination. The total FAME concentration was correlated with cover crop biomass (R = 0.62 at Sidney and 0.44 at Akron). By the time of wheat planting, there was a beneficial effect of irrigation, which caused an increase in myeorrhizal and protozoan markers. At wheat maturity, the cover crop and irrigation effects on soil FAMEs had subsided, but irrigation had a positive effect on the β-glucosidase and phosphodiesterase activities at Akron, which was the drier of the two sites. Cover crops and irrigation were slow to impact soil C concentration. Our results show that cover crops had a short-lived effect on soil microbial communities in semiarid wheat-based rotations and irrigation could enhance soil enzyme activity. In the semiarid environment, longer time spans may have been needed to see beneficial effects of cover crops on soil microbial community structure, soil enzyme activities, and soil C sequestration.
文摘Reduced early crop growth and limited branching are amongst yield limiting factors of linola. Field response of seed priming treatments viz. 50 mmol L^-1 salicylic acid (SA), 2.2% CaCl2 and 3.3% moringa leaf extract (MLE) including untreated dry and hydropriming controls was evaluated on early crop growth and yield performance of linola. Osmopriming with CaCl2 reduced emergence time and produced the highest seedling fresh and dry weights including Chl. a contents. Osmopriming with CaCl2 reduced crop branching and flowering and maturity times and had the maximum plant height, number of branches, tillers, pods and seeds per pod followed by MLE. Increase in seed weight, biological and seed yields was 9.30, 34.16 and 39.49%, harvest index (4.12%) and oil contents (13.39%) for CaCl2 osmopriming. Positive relationship between emergence and seedling vigor traits, 100-seed weight, seed yield with maturity time, 100-seed weight and seed yield were found. The study concludes that seed osmopriming with CaC12 or MLE can play significant role to improve early crop growth and seed yields of linola.
文摘Rice-wheat cropping system (RWCS) is one of the most important cropping systems in South Asia. However, sustainability of this system is under threat owing to several factors, of which deficiency of micronutrients particularly zinc (Zn), boron (B) and manganese (Mn) is one of the major problems. Continuous rotation of rice and wheat, imbalanced fertilizer use and little/no use of micronutrient-enriched fertilizers induce deficiencies of Zn, B and Mn in the RWCS of South Asia. Here we review that (i) imbalanced fertilizer use and organic matter depletion deteriorate soil structure resulting in low efficiency of applied macro- and micro-nutrients in RWCS.(ii) The micronutrients (Zn, B and Mn) are essentially involved in metabolism of rice and wheat plants, including chlorophyll synthesis, photosynthesis, enzyme activation and membrane integrity.(iii) Availability and uptake of Zn, B and Mn from rhizosphere depend on the physico-chemical soil properties (which differ under aerobic and anaerobic conditions) including soil pH, soil organic matter, soil moisture and interaction of these micronutrients with other nutrients.(iv) Plant ability to uptake and utilize the nutrients is affected by several plant factors such as root architecture, root hairs, transport kinetics parameter and root exudates.(v) Crop management and application of these microelements can help correct the micronutrients deficiency and enhance their grain concentration.
文摘A 12-year cover crops study on the effects on SOC sequestration, storage, retention and loss and corn and soybean yields was conducted in southern Illinois. The use of cover crops for the maintenance and restoration of soil organic carbon (SOC) and soil productivity of previously eroded soils were evaluated. No-till (NT), chisel plow (CP), and moldboard plow (MP) treatment plots with and without cover crops were established in 2001. The plot area was on sloping with a moderately well drained, eroded soil. The average annual corn and soybean yields were statistically the same for NT, CP, and MP systems with and without cover crops. By 2012, the cover crop treatments had more SOC stock than that without cover crops for the same soil layer and tillage treatment. The NT, CP, and MP treatments all sequestered SOC with cover crops. A pre-treatment SOC stock baseline for rooting zone was used to validate the finding that cover crops sequestered SOC in the topsoil, subsoil and root zone of the NT, CP and MP treatments during the 12-year study. Additional sequestered SOC was lost as a result of being transported off of the plots and retained in lower slopes, transported to the stream or released to atmosphere.
基金by the Natural Science Foundation of China (Grant No. 40801101)
文摘Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.
基金financially supported by Bahir Dar University Research and Community Service
文摘Farmers in the highlands of Ethiopia often plant Eucalyptus on their farmlands. However, growing Eucalyptus, especially on farm- lands suitable for crop production has become a great concern due to its alleged long-term site effects. Our study was conducted at Koga water- shed, Mecha District, northwestern Ethiopia to investigate whether crop- lands afforested with Eucalyptus camaldulensis Dehnh. can be restored for annual crop production after tree harvest. We compared growth and yield of two agricultural crops, barley (Hordeum vulgate L.) and finger millet (Eleusine coracana (L.) Gaertn.), grown in clear-felled stands of E. camaldulensis and continuously cultivated croplands at twelve paired farmlands under a conventional farming system. Plant height and dry matter production were evaluated as indices of crop growth, while grain weight was evaluated as an index of crop yield. Crop growth and yield measurements averaged over all farmlands differed between land-use types. For both crops, plants grown on clear-felled stands were taller than on croplands. Dry matter production and yield were also significantly greater in crops cultivated on clear-felled stands. Cropland aboveground and belowground dry matter productions were lower by 31.8 and 25.4% for barley and 32.8% and 37% for finger millet, respectively. Clear-felled stands gave an average yield of 2.91 t.ha-1 for barley and 3.27 t.ha-1 for finger millet while cropland gave a yield of 1.97 and 2.31 t.ha-1 for barley and finger millet, respectively. Farmers also responded that farm plots on former eucalypt plantations showed greater crop growth and yield thandid continuously cultivated croplands. Farmers perceived that Eucalyptus plantations improved soil fertility and they preferred clear-felled stands for crop production and wished to plant Eucalyptus on their farmlands. Our results suggest that conversion of agricultural lands to Eucalyptus plantations can increase post-felling yields of cereal crops.
文摘The present study, conducted during 2016 and 2017 seasons, aimed to investigate the effect of IBA on rooting of Piper betle L. stem cuttings (softwood and semi-hardwood). The experiment was undertaken in misting house field 2 UPM using the sand media to determine the adventitious roots initiation and development using the histological method. The cuttings were treated with different IBA concentrations (0, 500, 1000, 1500 and 2000 mg/L). The nodes explants were used in the development of a protocol for in vitro propagation of P. betle L., with different concentrations of Clorox with different times of immersion (20% Clorox 10 minutes, 30% Clorox 10 minutes, 20% Clorox 20 minutes, and 30% 20 minutes). In multiplication of the plantlets, Murashige and Skoog (MS) medium with different concentrations of BAP (0, 0.5, 1.0, 2.0 mg/L) were used to investigate the rooting of the explants. The results indicated that the types of the cuttings were different in the rooting capacity and the length of the roots. Moreover, it was found that in comparison with the control treatment, by a rise in the concentrations of the IBA, there was a significant upsurge in the rooting percentage, the root diameter, and the number of the roots. The results indicated that the types of cutting with 1000, 1500 and 2000 mg/L IBA perform better in the root percentage (100%) in the semi hardwood cuttings. The best results, however, were 2000 mg/L IBA in the semi hardwood cuttings, with the number of the roots to be 35.05, and the fresh weight of the roots to be 3.94 g, the dry weight of the roots to be 0.33 g, the length of the roots to be 391.88 cm, the roots diameter to be 1.21 mm, the surface area of the roots to be 121.83 cm2, and the root volume to be 2.99 cm3. Nonetheless, the optimal concentration of Clorox with the time immersion was 20% with the 20-minute immersion time, which produced a shoot induction percentage of 30% dead explants and a mean number of 70.00 shoots per explant and the optimal concentration of benzylaminopurine (BAP) at 1.0 mg/L. It is of note that a shoot induction percentage of 22.29% and a mean number of 4.1% number of auxiliary bud per treatment. P. betle shoots in MS medium without PGR MS (0.0) yielded a good rooting.
文摘Fields experiments were conducted at the Department of Crop Protection, Faculty of Agriculture, University of Maiduguri Teaching and Research Farm, Maiduguri during 2010 and 2011 cropping seasons to investigate the effects of intercropping pattern on stem borer pest infestation in pearl millet (Pennisetum glaucum L.) intercropped with ground nut (Arachis hypogea L.). A split-plot design was used to test the intercrop pattern of 1:0 ratio (sole millet), 1:1 ratio (1 millet row to 1 ground nut row), 2:1 ratio (2 millet rows to 1 ground nut row) and 1:2 ratio (1 millet row to 2 ground nut rows). The results obtained showed that the intercrop pattern of 1:2 ratio and 1:1 ratio yielded less stem borer infestation and abundance in pearl millet, and as well supported high panicle weight and grain yield. In addition to recommending either of these two intercropping patterns to pearl millet farmers for more effective stem borer pest management, results further show the need for identification of effective intercropping patterns in other cropping systems.
文摘High tunnels have been used in the United States for more than 50 years, and growers are encouraged to use them more frequently through government cost-share programs. Research on fruits and vegetable production systems has focused on high value crops such as tomato, salad greens, and several fruit crops. Maintaining soil quality and controlling insects and diseases are all issues that growers face. This review looks at current research on these issues as well as economic considerations addressed in the scientific literature. Global statistics and reports are also reviewed that complement the North American studies. Gaps in our understanding are identified, and directions for future research are suggested.
基金supported by German–Pakistani Research Cooperation(grant no.56453308)via German Academic Exchange Service(DAAD)to build German–Pakistani research and academic exchange and partnerships
文摘The root appears to be the most relevant organ for breeding drought stress tolerance.However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially in crop plants. We performed a meta-analysis of expression divergence of essential drought-inducible genes and analyzed their association with cis-elements in model crops and major cereal crops. Our analysis of42 selected drought-inducible genes revealed that these are expressed primarily in roots,followed by shoot, leaf, and inflorescence tissues, especially in wheat. Quantitative real-time RT-PCR analysis confirmed higher expression of TaDREB2 and TaAQP7 in roots,correlated with extensive rooting and drought-stress tolerance in wheat. A promoter scan up to 2 kb upstream of the translation start site using phylogenetic footprinting revealed708 transcription factor binding sites, including drought response elements(DREs), auxin response elements(Aux REs), MYCREs/MYBREs, ABAREs, and ERD1 in 19 selected genes.Interestingly, these elements were organized into clusters of overlapping transcription factor binding sites known as homotypic clusters(HCTs), which modulate drought physiology in plants. Taken together, these results revealed the expression preeminence of major drought-inducible genes in the root, suggesting its crucial role in drought adaptation. The occurrence of HCTs in drought-inducible genes highlights the putative evolutionary modifications of crop plants in developing drought adaptation. We propose that these DNA motifs can be used as molecular markers for breeding drought-resilient cultivars, particularly in the cereal crops.
文摘Decision support system for agro-technology transfer (DSSAT), OIL CROP-SUN Model was used to stimulate the phenology, growth, yield of different two sunflower hybrids. i.e. Hysun-33 and S-78 by applying different nitrogen levels. The effect of nitrogen (N) on growth and yield components of different sunflower (Helianthus annuus L.) hybrids were evaluated under agro-climatic conditions of Sargodha, Pakistan during spring 2013. The experiment was laid out in a randomized complete block design with split plot arrangement having three replications, keeping cultivars in the main plots and nitrogen levels (0, 45, 90,135 and 180 kg/ha) in sub plots. OIL CROP-SUN Model showed that the model was able to simulate the growth and yield of sunflower with an average of 10.44 error% between observed and simulate achene yield (AY). The result of simulation indicates that nitrogen rate of 180 kg/ha produced highest achene yield in S-78 hybrid as compared to other treatments and Hysun-33 cultivar.
文摘Field experiments were conducted at the experimental farm Cocoa Re-search Institute of Nigeria (CRIN) Sub-Station, Ochaja, in the Southern Guinea Savannaagro ecological zone of Nigeria to examine uptake and use efficien-cies of nutrients by Sesame and Bambara nut alley crops as influenced by manuring in a Cashew-based intercropping system. Experimental treatments were based on responses of sole and intercrop mixtures of Sesame and Bam-bara nut alley crops to Cocoa Pod Husk (CPH), pelletized organic fertilizer and NPK fertilizer in a cashew-based intercropping system. Data were collected on the growth and yield variables of the alley crops. Highest nitrogen harvest in-dex (NHI) for seed and leaf of alley crops were obtained from un-manure treated plants. Cocoa pod husk (CPH) significantly enhanced P uptake com-pared with other fertilizers applied. CPH improved Na, Ca, Mg Zn, Cu, P, K and carbohydrate in the leaves and Ca, Mg, Zn, Fe, Cu, crude fibre and car-bohydrate contents of seeds of sole crops while Sesame + Bambara had en-hanced contents of N, Ca, Mg, Zn, Cu, P, N, K, moisture, protein, and crude fi-bre, crude protein, moisture content in leaves. The effects of NPK were signifi-cant for N, K Ca, Zn, Fe, Cu, P, moisture and crude fibre, while in the un-manure (control) plots influenced N, fat and protein and nitrogen harvest index (NHI) of leaf and seeds. CPH and NPK fertilizers enhanced nutrient up-take and nitrogen harvest index of alley crops. Nutrient uptake was similar for the varieties of Sesame and Bambara nut as affected by the application of 4.84 and 9.68 Kg pelletized organic fertilizer. Sole Bambara had higher N and K concentration in leaves compared with Bambara +Sesame. In addition, sole Bambara had higher values of Physiology efficiency (PE), and fertilizer use ef-ficiency (FAE) compared to the mixed crops of Bambara + sesame. However, physiology efficiency (PE), and fertilizer use efficiency (FAE) were significantly lower for Bambara + Sesame. The un-manure plants had enhanced N, P and K uptake. Varietal effects were pronounced for most of the resource use effi-ciency variables measured. The alley crop varieties responded differently to 4.84 and 9.68 kg pelletized fertilizer treatments (Agronomy Efficiency (AE), N-removed at harvest and Internal Utilization Efficiency (IE) and partial fac-tor productivity (PFP)). Sesame variety NCRIBen04E had enhanced AE, N-remove at harvest, IE and PFP while variety E8 had significantly higher ap-parent Recovery Efficiency (RE), apparent Recovery Efficiency by difference (RE%), Physiology Efficiency (PE), Utilization Efficiency (UE), and internal Utilization Efficient (IE). Bambara variety TVSu999 had higher IUE, Agron-omy Efficiency (AE), Apparent Recovery Efficiency (RE), Physiology Effi-ciency (PE) and Fertilizer Agronomy using Efficiency respectively (FAE) com-pared to variety TVSu1166. The fertilizers affected most of the indicators of nutrient use efficiency (NUE) measured. The effects were significant on AE, agronomic N-use efficiency (ANUE), RE, UE and PFP. NPK fertilizer enhanced Physiology efficiency (PE) and Partial factor production. NPK fertilizer signifi-cantly enhanced NUE parameters compared to CPH and un-manure. CPH manure significantly influenced RE%, PE and IE. The Internal Utilization Effi-ciency and N-remove at harvest were compared with the un-manure plants (control). The effects of 9.68 kg/plot pelletized fertilizer, were pronounced on Agronomy Efficiency (AE), Apparent Recovery Efficiency by difference (RE%), Physiology Efficiency (PE), Utilization Efficiency (UE), N-removed at harvest and Internal Utilization Efficiency (IE). Similar trends were observed in the responses NUE of Sesame and Bambara manuring. The responses sole crops in terms of RE, PE UE PFP were similar while their intercrop combina-tions had significantly higher AE, RE, UE, PFP and N removed at harvest. Sole Sesame significantly influence Agronomy Efficiency (AE), Utilization Effi-ciency (UE), Internal Efficiency (IE) and Partial Fertilizer Production (PFP) and sole Bambara under NPK fertilizer had enhanced N-removed at harvest and apparent recovery by difference (RE%). Bambara + Sesame under cocoa pod husk (CPH) manure had enhanced apparent recovery efficiency by difference (RE%), fertilizer use efficiency (FAE) and internal utilization efficiency (IE). Sesame variety NCRIBen04E had enhanced Agronomy Efficiency (AE), N-removed at harvest and Internal Utilization Efficiency (IE) under 9.68 kg treatment while variety E8 had higher partial factor productivity (PFP) at 4.84 kg/plot pelletized organic fertilizer.
文摘This study was conducted to assess the incidence of seed-borne fungi on rice seeds sourced from the major rice growing areas of South-Eastern Nigeria. The rice seeds were collected during the dry seasons between 2009 and 2010. Four hundred rice seeds randomly collected and surface sterilized by washing in 3% sodium hypochlorite and rinsed two times with sterile distilled water were placed in three circular rings inside the Petri dishes. The incubation was done one after the other for each variety from all the locations. Ten fungi species from eight genera were isolated from the rice seeds in all the rice growing areas of South-Eastern Nigeria. The fungi pathogens vary from one locality to another, as well as the frequency of occurrence. The pathogens isolated include: Fusarium moniliforme, F. solani, F. oxysporium, Aspergillus spp., Botridiploidia spp., Helminthosporium spp., Penicillium spp., Trichoconis padwickii, Curvularia oryzae and Phoma oryzae. Though, there was the presence of some seed-borne fungi in the rice seeds from the areas studied, most of the cultivars experienced up to 90% germination. But some cultivars had very low germination. IR 1416 from Arochukwu and GB90 from Arondiuzogu had less than 1% germination. This study shows that seed-borne organisms are major constraint in rice production in the South-Eastern states of Nigeria as a result of low seed germination stemmed from infestation of fungi organisms in the seeds.
文摘The US is one of the leading global producers of paper industry with approximately 24 percent of the share of world paper supply. Despite diversity of the feedstock and production methods, C rich papermill biosolids (PB) is a major byproduct of paper production process. Landfilling is the predominant method of PB management. Increasing landfill cost and its potential environmental consequences have incentivized research and development efforts to find beneficial uses for PB. This sensible option reduces the overall paper production costs and increases environmental sustainability. Pelletization of PB increases its marketability by reducing transportation costs. This greenhouse study was conducted to gain a better understanding of the properties and effects of a recently developed pelletized papermill biosolids (PPB) on bell pepper (Capsicum annuum L.) and soil. Urea and PPB were each applied at four total N rates equivalent to 45, 90, 135, and 180 kg N ha﹣1 and an additional control treatments of 0 N was included. The total C and N concentration in this PPB were 379 and 14 g·kg﹣1 respectively and its C:N ratio was 27.2. Nitrogen treatment significantly (P ≤ 0.0839) influenced pepper height, dry biomass, N concentration, and N uptake. Plant height ranged from 31.2 to 44.4 cm;135 kg·ha﹣1 urea-N and PPB-N produced the tallest and shortest plants respectively. Dry biomass of the pepper that did not receive any N, those treated with urea-N or PPB-N were 5.3, 5.7 - 7.5, and 5.9 - 6.5 g·plant﹣1 respectively. Nitrogen concentration in control treatment (0 N) was 36.4 g·kg﹣1 and that of pepper treated with any N ranged from 32.0 - 40.7 g·kg﹣1. There was an inverse numerical, albeit not always statistically significant, relationship between PPB rate and plant N concentration. Generally, pepper treated with urea removed significantly more N from soil than control or PPB treated pepper. Nitrogen uptake by plants that did not receive any N and those amended with urea or PPB were 194, 229 - 270, and 155 - 164 mg·plant﹣1 respectively. Pepper N uptake and concentration data indicate that higher rates of PPB resulted in immobilization of native soil and PPB-N due to its wide C:N ratio (27.2). Nitrogen treatment significantly influenced soil pH, SOM, total C and N (P > 0.1). Soil organic matter and total C in post-harvest soil samples were 17.4 - 19.4 and 21.9 - 35.0 g·kg﹣1 respectively. The observed increase in soil total C and SOM highlights the potential beneficial use of PPB as a means to improve soil health and sequester C in soil. Narrowing the C:N ratio of PPB, by coapplication or incorporation of the mineral N into the pellets will make it an attractive organic N fertilizer.
文摘This study sought to establish the compatibility effects of biochar/vermin-compost application on growth and yield of maize and cabbages. Biochar application rate was at 3 to 4% of soil weight. Biochar was mixed in various proportions to come up with treatments which were 100% vermicompost, 50/50% biochar: vermicompost, 75/25% biochar: vermicompost and 100% biochar. The experiment was repeated twice and arranged as a completely randomized design and replicated five times. The study established that maize yield increased with application of biochar from 25% to 50%. In the cabbage trial, comparable results in plant height, leaf numbers and final yield was obtained with 100% vermicompost application, 50% and 75% biochar inclusion. When biochar was applied at 100%, noticeable reduction in plant performance was noted. It is recommended to use biochar as a bio-fertiliser at 50/50% biochar: vermicompost in maize and cabbage production.
文摘Soil water retention is a critical aspect of agricultural management, especially in areas such as the Lower Mississippi River Alluvial Valley that face potential water shortages in the near future. Previous studies have linked changes in soil water retention characteristics to agricultural management practices, especially as they affect the accumulation of soil organic matter (SOM). Therefore, the objective of this study was to determine the relationship between soil water potential and gravimetric soil water content in the top 7.5 cm as affected by nitrogen (N) fertilization/residue level (high and low), residue burning (burning and non-burning), tillage (conventional and no-tillage), and irrigation (irrigated and non-irrigated) after 12 complete cropping cycles in a wheat (Triticum aestivum L.)-soybean [Glycine max (L.) Merr.], double-crop production system in the Delta region of eastern Arkansas using soil wetting curves. The soil investigated was a Calloway silt loam (fine silty, mixed, active, thermic Glossaquic Fraglossudalf). The slope characterizing the relationship between the natural logarithm of the soil water potential and the gravimetric soil water content was only affected (P < 0.05) by the N-fertilization/residue-level treatment, while the intercept was unaffected by any field treatment. Averaged across tillage, burning, and irrigation, soil water contents under the high-exceeded those under low-N-fertilization/residue-level treatment at the same water potential, with the greatest differences observed at water contents > 0.12 g·g-1. Understanding the ways in which alternative residue management practices affect soil water retention characteristics is an important component of conserving irrigation water resources.
文摘Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended.
基金Funding was made available through the Georgia Cotton Commission and was funded with producer checkoff funds to improve cotton production within the state of Georgia。
文摘Background:This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential(ΨPD)irrigation thresholds to increase agricultural water use efficiency(WUE)in cotton.To this end,a study was conducted near Tifton,Georgia under a manually-controlled,variable-rate lateral irrigation system using a Scholander pressure chamber approach to measure leaf water potential and impose varying irrigation scheduling treatments during the growing season.ΨPDthresholds were-0.4 MPa(T1),-0.5 MPa(T2),and-0.7 MPa(T3).A winter rye cover crop or conventional tillage were utilized for T1-T3 as well.Results:Reductions in irrigation of up to 10%were noted in this study for the driest threshold(-0.7 MPa)with no reduction in lint yield relative to the-0.4 MPa and-0.5 MPa thresholds.Drier conditions during flowering(2014)limited plant growth and node production,hastened cutout,and decreased yield and WUE relative to 2015.Conclusions:We conclude thatΨPDirrigation thresholds between-0.5 MPa and-0.7 MPa appear to be viable for use in aΨPDscheduling system with adequate yield and WUE for cotton production in the southeastern U.S.Rye cover positively impacted water potential at certain points throughout the growing season but not yield or WUE indicating the potential for rye cover crops to improve water use efficiency should be tested under longer-term production scenarios.
基金supported by Research Program for Agricultural Science and Technology Development,Republic of Korea(PJ01570601)the Fellowship Program(PJ01661001)of the National Institute of Agricultural Sciences,Republic of KoreaRural Development Administration,Republic of Korea.
文摘The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple crucial for global food security,possesses six transcription factor superfamilies-AP2/ERF,bHLH,bZIP,MYB,NAC,and WRKY-that function in innate immunity against pathogens.We review their biological functions and regulatory mechanisms in rice immunity.