Cloud computing can offer a very powerful, reliable, predictable and scalable computing infrastructure for the execution of MAS (multi-agent systems) implementing complex agent-based applications such when modelling...Cloud computing can offer a very powerful, reliable, predictable and scalable computing infrastructure for the execution of MAS (multi-agent systems) implementing complex agent-based applications such when modelling, simulation and real-time running of complex systems must be provided. Multi-agent systems appears as an adequate approach to current challenges in many areas. Between important qualities of MAS also belongs to, that they are open, interoperable, and heterogenous systems. The agent is active, a program entity, has its own ideas how to perform the tasks of the own agenda. Agents: perceive, behave "reasonably", act in the environment, communicate with other agents. Cloud infrastructures can offer an ideal platform where run MAS systems simulations, applications and real-time running because of its large amount of processing and memory resources that can be dynamically configured for executing large agent-based software at unprecedented scale. Cloud computing can help chemical and food companies drive operational excellence; meet growing and changing customer demands; accelerate new product innovation and ramp-to-volume manufacturing in key markets; reduce IT spending; manage and mitigate supply chain risks; and enable faster and more flexible delivery of new IT system. Production type of SOC (service-oriented computing) can be inspired by a "Cloud", for the production of "Cloud" offers an attractive and natural solutions in several computing trends such as delivery system over the Internet, use of utilities, flexibility, virtualization, a "grid" distributed computing, outsourcing, Web 2.0, etc.. Production of the "Cloud" is also considered as a new multidisciplinary field that includes "network" production, virtual manufacturing, agile manufacturing, and of course cloud computing. Examples of cloud computing and MAS applications in food and chemistry development and industry, proposition of using multi-agent systems in the control of batch processes, modified ACO (ant colony optimization) approach for the diversified service allocation and scheduling mechanism in cloud paradigma, examples of applications in a business area were studied in the paper.展开更多
It is impossible to plan in advance unpredictable phenomena at monitoring, diagnosis and control of industrial batch and continuous equipment and processes such as chemical composition of the raw materials, the proces...It is impossible to plan in advance unpredictable phenomena at monitoring, diagnosis and control of industrial batch and continuous equipment and processes such as chemical composition of the raw materials, the process leads to unexpected reactions and changes its parameters, etc. The agent is active, a program entity, has its own ideas how to perform the tasks of the own agenda. Agents perceive, behave "reasonably", communicate with other agents. Agents can represent equipment and operations in batch processes as recommended by the ISA $88. Jadex system is based on Java language and on FIPA org. recommendations. The description of ripening tank T406 and recipe for yogurt production in the holding of MADETA Corp. in the Czech Rep. It is described modeling and displaying of"normal" and error, fault unit state of the ripening tank. Agents are within the Jadex system and describing the behavior of ripening tank T406 with state diagrams-automata and assist in diagnosing of fault states. States are described in XML language-SCXML (State Charts XML). Jadex Control Center-JCC represents a major access point to use for operating in real time.展开更多
In this study, the performance of Sevcik’s algorithm that calculates the fractal dimension and permutation entropy as discriminants to detect calming and insight meditation in electroencephalo-graphic (EEG) signals w...In this study, the performance of Sevcik’s algorithm that calculates the fractal dimension and permutation entropy as discriminants to detect calming and insight meditation in electroencephalo-graphic (EEG) signals was assessed. The proposed methods were applied to EEG recordings from meditators practicing insight meditation and calming meditation before as well as during both types of meditation. Analysis was conducted using statistical hypothesis testing to determine the validity of the proposed meditation-identifying techniques. For both types of meditation, there was a statistically significant reduction in the permutation entropy. This result can be explained by the increased EEG synchronization, which is repeatedly observed in the course of meditation. In contrast, the fractal dimension (FD) was significantly increased during calming meditation, but during insight meditation, no statistically significant change was detected. Increased FD during meditation can be interpreted as an increase in self-similarity of EEG signals during self-organisation of hierarchical structure oscillators in the brain. Our results indicate that fractal dimension and permutation entropy could be used as parameters to detect both types of meditation. The permutation entropy is advantageous compared with the fractal dimension because it does not require a stationary signal.展开更多
文摘Cloud computing can offer a very powerful, reliable, predictable and scalable computing infrastructure for the execution of MAS (multi-agent systems) implementing complex agent-based applications such when modelling, simulation and real-time running of complex systems must be provided. Multi-agent systems appears as an adequate approach to current challenges in many areas. Between important qualities of MAS also belongs to, that they are open, interoperable, and heterogenous systems. The agent is active, a program entity, has its own ideas how to perform the tasks of the own agenda. Agents: perceive, behave "reasonably", act in the environment, communicate with other agents. Cloud infrastructures can offer an ideal platform where run MAS systems simulations, applications and real-time running because of its large amount of processing and memory resources that can be dynamically configured for executing large agent-based software at unprecedented scale. Cloud computing can help chemical and food companies drive operational excellence; meet growing and changing customer demands; accelerate new product innovation and ramp-to-volume manufacturing in key markets; reduce IT spending; manage and mitigate supply chain risks; and enable faster and more flexible delivery of new IT system. Production type of SOC (service-oriented computing) can be inspired by a "Cloud", for the production of "Cloud" offers an attractive and natural solutions in several computing trends such as delivery system over the Internet, use of utilities, flexibility, virtualization, a "grid" distributed computing, outsourcing, Web 2.0, etc.. Production of the "Cloud" is also considered as a new multidisciplinary field that includes "network" production, virtual manufacturing, agile manufacturing, and of course cloud computing. Examples of cloud computing and MAS applications in food and chemistry development and industry, proposition of using multi-agent systems in the control of batch processes, modified ACO (ant colony optimization) approach for the diversified service allocation and scheduling mechanism in cloud paradigma, examples of applications in a business area were studied in the paper.
文摘It is impossible to plan in advance unpredictable phenomena at monitoring, diagnosis and control of industrial batch and continuous equipment and processes such as chemical composition of the raw materials, the process leads to unexpected reactions and changes its parameters, etc. The agent is active, a program entity, has its own ideas how to perform the tasks of the own agenda. Agents perceive, behave "reasonably", communicate with other agents. Agents can represent equipment and operations in batch processes as recommended by the ISA $88. Jadex system is based on Java language and on FIPA org. recommendations. The description of ripening tank T406 and recipe for yogurt production in the holding of MADETA Corp. in the Czech Rep. It is described modeling and displaying of"normal" and error, fault unit state of the ripening tank. Agents are within the Jadex system and describing the behavior of ripening tank T406 with state diagrams-automata and assist in diagnosing of fault states. States are described in XML language-SCXML (State Charts XML). Jadex Control Center-JCC represents a major access point to use for operating in real time.
文摘In this study, the performance of Sevcik’s algorithm that calculates the fractal dimension and permutation entropy as discriminants to detect calming and insight meditation in electroencephalo-graphic (EEG) signals was assessed. The proposed methods were applied to EEG recordings from meditators practicing insight meditation and calming meditation before as well as during both types of meditation. Analysis was conducted using statistical hypothesis testing to determine the validity of the proposed meditation-identifying techniques. For both types of meditation, there was a statistically significant reduction in the permutation entropy. This result can be explained by the increased EEG synchronization, which is repeatedly observed in the course of meditation. In contrast, the fractal dimension (FD) was significantly increased during calming meditation, but during insight meditation, no statistically significant change was detected. Increased FD during meditation can be interpreted as an increase in self-similarity of EEG signals during self-organisation of hierarchical structure oscillators in the brain. Our results indicate that fractal dimension and permutation entropy could be used as parameters to detect both types of meditation. The permutation entropy is advantageous compared with the fractal dimension because it does not require a stationary signal.