期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ordered Clustering-Based Semantic Music Recommender System Using Deep Learning Selection
1
作者 Weitao Ha Sheng Gang +2 位作者 Yahya D.Navaei Abubakar S.Gezawa Yaser A.Nanehkaran 《Computers, Materials & Continua》 2025年第5期3025-3057,共33页
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users... Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%. 展开更多
关键词 Music recommender system order clustering deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部