期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Design of a Lightweight Compressed Video Stream-Based Patient Activity Monitoring System
1
作者 Sangeeta Yadav Preeti Gulia +5 位作者 Nasib Singh Gill Piyush Kumar Shukla Arfat Ahmad Khan Sultan Alharby Ahmed Alhussen Mohd Anul Haq 《Computers, Materials & Continua》 SCIE EI 2024年第1期1253-1274,共22页
Inpatient falls from beds in hospitals are a common problem.Such falls may result in severe injuries.This problem can be addressed by continuous monitoring of patients using cameras.Recent advancements in deep learnin... Inpatient falls from beds in hospitals are a common problem.Such falls may result in severe injuries.This problem can be addressed by continuous monitoring of patients using cameras.Recent advancements in deep learning-based video analytics have made this task of fall detection more effective and efficient.Along with fall detection,monitoring of different activities of the patients is also of significant concern to assess the improvement in their health.High computation-intensive models are required to monitor every action of the patient precisely.This requirement limits the applicability of such networks.Hence,to keep the model lightweight,the already designed fall detection networks can be extended to monitor the general activities of the patients along with the fall detection.Motivated by the same notion,we propose a novel,lightweight,and efficient patient activity monitoring system that broadly classifies the patients’activities into fall,activity,and rest classes based on their poses.The whole network comprises three sub-networks,namely a Convolutional Neural Networks(CNN)based video compression network,a Lightweight Pose Network(LPN)and a Residual Network(ResNet)Mixer block-based activity recognition network.The compression network compresses the video streams using deep learning networks for efficient storage and retrieval;after that,LPN estimates human poses.Finally,the activity recognition network classifies the patients’activities based on their poses.The proposed system shows an overall accuracy of approx.99.7% over a standard dataset with 99.63% fall detection accuracy and efficiently monitors different events,which may help monitor the falls and improve the inpatients’health. 展开更多
关键词 Fall detection activity recognition human pose estimation ACCURACY
在线阅读 下载PDF
Recognition of newspaper printed in Gurumukhi script
2
作者 Rupinder Pal Kaur Manish Kumar Jindal Munish Kumar 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2495-2503,共9页
In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power c... In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved. 展开更多
关键词 newspaper recognition feature extraction CLASSIFICATION Gurumukhi script random forest
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部