The exponential growth of the Internet of Things(IoT)has revolutionized various domains such as healthcare,smart cities,and agriculture,generating vast volumes of data that require secure processing and storage in clo...The exponential growth of the Internet of Things(IoT)has revolutionized various domains such as healthcare,smart cities,and agriculture,generating vast volumes of data that require secure processing and storage in cloud environments.However,reliance on cloud infrastructure raises critical security challenges,particularly regarding data integrity.While existing cryptographic methods provide robust integrity verification,they impose significant computational and energy overheads on resource-constrained IoT devices,limiting their applicability in large-scale,real-time scenarios.To address these challenges,we propose the Cognitive-Based Integrity Verification Model(C-BIVM),which leverages Belief-Desire-Intention(BDI)cognitive intelligence and algebraic signatures to enable lightweight,efficient,and scalable data integrity verification.The model incorporates batch auditing,reducing resource consumption in large-scale IoT environments by approximately 35%,while achieving an accuracy of over 99.2%in detecting data corruption.C-BIVM dynamically adapts integrity checks based on real-time conditions,optimizing resource utilization by minimizing redundant operations by more than 30%.Furthermore,blind verification techniques safeguard sensitive IoT data,ensuring privacy compliance by preventing unauthorized access during integrity checks.Extensive experimental evaluations demonstrate that C-BIVM reduces computation time for integrity checks by up to 40%compared to traditional bilinear pairing-based methods,making it particularly suitable for IoT-driven applications in smart cities,healthcare,and beyond.These results underscore the effectiveness of C-BIVM in delivering a secure,scalable,and resource-efficient solution tailored to the evolving needs of IoT ecosystems.展开更多
The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fi...The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.展开更多
Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications...Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.展开更多
基金supported by King Saud University,Riyadh,Saudi Arabia,through Researchers Supporting Project number RSP2025R498.
文摘The exponential growth of the Internet of Things(IoT)has revolutionized various domains such as healthcare,smart cities,and agriculture,generating vast volumes of data that require secure processing and storage in cloud environments.However,reliance on cloud infrastructure raises critical security challenges,particularly regarding data integrity.While existing cryptographic methods provide robust integrity verification,they impose significant computational and energy overheads on resource-constrained IoT devices,limiting their applicability in large-scale,real-time scenarios.To address these challenges,we propose the Cognitive-Based Integrity Verification Model(C-BIVM),which leverages Belief-Desire-Intention(BDI)cognitive intelligence and algebraic signatures to enable lightweight,efficient,and scalable data integrity verification.The model incorporates batch auditing,reducing resource consumption in large-scale IoT environments by approximately 35%,while achieving an accuracy of over 99.2%in detecting data corruption.C-BIVM dynamically adapts integrity checks based on real-time conditions,optimizing resource utilization by minimizing redundant operations by more than 30%.Furthermore,blind verification techniques safeguard sensitive IoT data,ensuring privacy compliance by preventing unauthorized access during integrity checks.Extensive experimental evaluations demonstrate that C-BIVM reduces computation time for integrity checks by up to 40%compared to traditional bilinear pairing-based methods,making it particularly suitable for IoT-driven applications in smart cities,healthcare,and beyond.These results underscore the effectiveness of C-BIVM in delivering a secure,scalable,and resource-efficient solution tailored to the evolving needs of IoT ecosystems.
基金funded by King Saud University,Riyadh,Saudi Arabia.Researchers Supporting Proiect Number(RSP2023R167)King Saud University,Riyadh,Saudi Arabia.
文摘The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.
文摘Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.