期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Augmenting Internet of Medical Things Security:Deep Ensemble Integration and Methodological Fusion
1
作者 Hamad Naeem Amjad Alsirhani +2 位作者 Faeiz MAlserhani Farhan Ullah Ondrej Krejcar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2185-2223,共39页
When it comes to smart healthcare business systems,network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults.To protect IoMT devices and networks ... When it comes to smart healthcare business systems,network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults.To protect IoMT devices and networks in healthcare and medical settings,our proposed model serves as a powerful tool for monitoring IoMT networks.This study presents a robust methodology for intrusion detection in Internet of Medical Things(IoMT)environments,integrating data augmentation,feature selection,and ensemble learning to effectively handle IoMT data complexity.Following rigorous preprocessing,including feature extraction,correlation removal,and Recursive Feature Elimi-nation(RFE),selected features are standardized and reshaped for deep learning models.Augmentation using the BAT algorithm enhances dataset variability.Three deep learning models,Transformer-based neural networks,self-attention Deep Convolutional Neural Networks(DCNNs),and Long Short-Term Memory(LSTM)networks,are trained to capture diverse data aspects.Their predictions form a meta-feature set for a subsequent meta-learner,which combines model strengths.Conventional classifiers validate meta-learner features for broad algorithm suitability.This comprehensive method demonstrates high accuracy and robustness in IoMT intrusion detection.Evaluations were conducted using two datasets:the publicly available WUSTL-EHMS-2020 dataset,which contains two distinct categories,and the CICIoMT2024 dataset,encompassing sixteen categories.Experimental results showcase the method’s exceptional performance,achieving optimal scores of 100%on the WUSTL-EHMS-2020 dataset and 99%on the CICIoMT2024. 展开更多
关键词 Cyberattack ensemble learning feature selection intrusion detection smart cities machine learning BAT augmentation
在线阅读 下载PDF
Enhancing Secure Development in Globally Distributed Software Product Lines: A Machine Learning-Powered Framework for Cyber-Resilient Ecosystems
2
作者 Marya Iqbal Yaser Hafeez +5 位作者 Nabil Almashfi Amjad Alsirhani Faeiz Alserhani Sadia Ali Mamoona Humayun Muhammad Jamal 《Computers, Materials & Continua》 SCIE EI 2024年第6期5031-5049,共19页
Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to... Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to managing SPL variability,underscoring the critical importance of robust cybersecurity measures.This paper advocates for leveraging machine learning(ML)to address variability management issues and fortify the security of SPL.In the context of the broader special issue theme on innovative cybersecurity approaches,our proposed ML-based framework offers an interdisciplinary perspective,blending insights from computing,social sciences,and business.Specifically,it employs ML for demand analysis,dynamic feature extraction,and enhanced feature selection in distributed settings,contributing to cyber-resilient ecosystems.Our experiments demonstrate the framework’s superiority,emphasizing its potential to boost productivity and security in SPLs.As digital threats evolve,this research catalyzes interdisciplinary collaborations,aligning with the special issue’s goal of breaking down academic barriers to strengthen digital ecosystems against sophisticated attacks while upholding ethics,privacy,and human values. 展开更多
关键词 Machine Learning variability management CYBERSECURITY digital ecosystems cyber-resilience
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部