The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing capacity.Despite the popularity of ML tech...Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing capacity.Despite the popularity of ML techniques,only a few research studies have focused on the application of ML especially supervised learning techniques in Requirement Engineering(RE)activities to solve the problems that occur in RE activities.The authors focus on the systematic mapping of past work to investigate those studies that focused on the application of supervised learning techniques in RE activities between the period of 2002–2023.The authors aim to investigate the research trends,main RE activities,ML algorithms,and data sources that were studied during this period.Forty-five research studies were selected based on our exclusion and inclusion criteria.The results show that the scientific community used 57 algorithms.Among those algorithms,researchers mostly used the five following ML algorithms in RE activities:Decision Tree,Support Vector Machine,Naïve Bayes,K-nearest neighbour Classifier,and Random Forest.The results show that researchers used these algorithms in eight major RE activities.Those activities are requirements analysis,failure prediction,effort estimation,quality,traceability,business rules identification,content classification,and detection of problems in requirements written in natural language.Our selected research studies used 32 private and 41 public data sources.The most popular data sources that were detected in selected studies are the Metric Data Programme from NASA,Predictor Models in Software Engineering,and iTrust Electronic Health Care System.展开更多
In the era of Industry 4.0,conditionmonitoring has emerged as an effective solution for process industries to optimize their operational efficiency.Condition monitoring helps minimize unplanned downtime,extending equi...In the era of Industry 4.0,conditionmonitoring has emerged as an effective solution for process industries to optimize their operational efficiency.Condition monitoring helps minimize unplanned downtime,extending equipment lifespan,reducing maintenance costs,and improving production quality and safety.This research focuses on utilizing Bayesian search-based machine learning and deep learning approaches for the condition monitoring of industrial equipment.The study aims to enhance predictive maintenance for industrial equipment by forecasting vibration values based on domain-specific feature engineering.Early prediction of vibration enables proactive interventions to minimize downtime and extend the lifespan of critical assets.A data set of load information and vibration values from a heavy-duty industrial slip ring induction motor(4600 kW)and gearbox equipped with vibration sensors is used as a case study.The study implements and compares six machine learning models with the proposed Bayesian-optimized stacked Long Short-Term Memory(LSTM)model.The hyperparameters used in the implementation of models are selected based on the Bayesian optimization technique.Comparative analysis reveals that the proposed Bayesian optimized stacked LSTM outperforms other models,showcasing its capability to learn temporal features as well as long-term dependencies in time series information.The implemented machine learning models:Linear Regression(LR),RandomForest(RF),Gradient Boosting Regressor(GBR),ExtremeGradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Support Vector Regressor(SVR)displayed a mean squared error of 0.9515,0.4654,0.1849,0.0295,0.2127 and 0.0273,respectively.The proposed model predicts the future vibration characteristics with a mean squared error of 0.0019 on the dataset containing motor load information and vibration characteristics.The results demonstrate that the proposed model outperforms other models in terms of other evaluation metrics with a mean absolute error of 0.0263 and 0.882 as a coefficient of determination.Current research not only contributes to the comparative performance of machine learning models in condition monitoring but also showcases the practical implications of employing these techniques.By transitioning fromreactive to proactive maintenance strategies,industries canminimize downtime,reduce costs,and prolong the lifespan of crucial assets.This study demonstrates the practical advantages of transitioning from reactive to proactive maintenance strategies using ML-based condition monitoring.展开更多
The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These in...The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.展开更多
Sentiment Analysis,a significant domain within Natural Language Processing(NLP),focuses on extracting and interpreting subjective information-such as emotions,opinions,and attitudes-from textual data.With the increasi...Sentiment Analysis,a significant domain within Natural Language Processing(NLP),focuses on extracting and interpreting subjective information-such as emotions,opinions,and attitudes-from textual data.With the increasing volume of user-generated content on social media and digital platforms,sentiment analysis has become essential for deriving actionable insights across various sectors.This study presents a systematic literature review of sentiment analysis methodologies,encompassing traditional machine learning algorithms,lexicon-based approaches,and recent advancements in deep learning techniques.The review follows a structured protocol comprising three phases:planning,execution,and analysis/reporting.During the execution phase,67 peer-reviewed articles were initially retrieved,with 25 meeting predefined inclusion and exclusion criteria.The analysis phase involved a detailed examination of each study’s methodology,experimental setup,and key contributions.Among the deep learning models evaluated,Long Short-Term Memory(LSTM)networks were identified as the most frequently adopted architecture for sentiment classification tasks.This review highlights current trends,technical challenges,and emerging opportunities in the field,providing valuable guidance for future research and development in applications such as market analysis,public health monitoring,financial forecasting,and crisis management.展开更多
The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from ...The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication.展开更多
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 3...Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.展开更多
In a cloud environment,graphics processing units(GPUs)are the primary devices used for high-performance computation.They exploit flexible resource utilization,a key advantage of cloud environments.Multiple users share...In a cloud environment,graphics processing units(GPUs)are the primary devices used for high-performance computation.They exploit flexible resource utilization,a key advantage of cloud environments.Multiple users share GPUs,which serve as coprocessors of central processing units(CPUs)and are activated only if tasks demand GPU computation.In a container environment,where resources can be shared among multiple users,GPU utilization can be increased by minimizing idle time because the tasks of many users run on a single GPU.However,unlike CPUs and memory,GPUs cannot logically multiplex their resources.Additionally,GPU memory does not support over-utilization:when it runs out,tasks will fail.Therefore,it is necessary to regulate the order of execution of concurrently running GPU tasks to avoid such task failures and to ensure equitable GPU sharing among users.In this paper,we propose a GPU task execution order management technique that controls GPU usage via time-based containers.The technique seeks to ensure equal GPU time among users in a container environment to prevent task failures.In the meantime,we use a deferred processing method to prevent GPU memory shortages when GPU tasks are executed simultaneously and to determine the execution order based on the GPU usage time.As the order of GPU tasks cannot be externally adjusted arbitrarily once the task commences,the GPU task is indirectly paused by pausing the container.In addition,as container pause/unpause status is based on the information about the available GPU memory capacity,overuse of GPU memory can be prevented at the source.As a result,the strategy can prevent task failure and the GPU tasks can be experimentally processed in appropriate order.展开更多
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.展开更多
In today’s digital era,the rapid evolution of image editing technologies has brought about a significant simplification of image manipulation.Unfortunately,this progress has also given rise to the misuse of manipulat...In today’s digital era,the rapid evolution of image editing technologies has brought about a significant simplification of image manipulation.Unfortunately,this progress has also given rise to the misuse of manipulated images across various domains.One of the pressing challenges stemming from this advancement is the increasing difficulty in discerning between unaltered and manipulated images.This paper offers a comprehensive survey of existing methodologies for detecting image tampering,shedding light on the diverse approaches employed in the field of contemporary image forensics.The methods used to identify image forgery can be broadly classified into two primary categories:classical machine learning techniques,heavily reliant on manually crafted features,and deep learning methods.Additionally,this paper explores recent developments in image forensics,placing particular emphasis on the detection of counterfeit colorization.Image colorization involves predicting colors for grayscale images,thereby enhancing their visual appeal.The advancements in colorization techniques have reached a level where distinguishing between authentic and forged images with the naked eye has become an exceptionally challenging task.This paper serves as an in-depth exploration of the intricacies of image forensics in the modern age,with a specific focus on the detection of colorization forgery,presenting a comprehensive overview of methodologies in this critical field.展开更多
The Internet of Things(IoT)is a smart infrastructure where devices share captured data with the respective server or edge modules.However,secure and reliable communication is among the challenging tasks in these netwo...The Internet of Things(IoT)is a smart infrastructure where devices share captured data with the respective server or edge modules.However,secure and reliable communication is among the challenging tasks in these networks,as shared channels are used to transmit packets.In this paper,a decision tree is integrated with other metrics to form a secure distributed communication strategy for IoT.Initially,every device works collaboratively to form a distributed network.In this model,if a device is deployed outside the coverage area of the nearest server,it communicates indirectly through the neighboring devices.For this purpose,every device collects data from the respective neighboring devices,such as hop count,average packet transmission delay,criticality factor,link reliability,and RSSI value,etc.These parameters are used to find an optimal route from the source to the destination.Secondly,the proposed approach has enabled devices to learn from the environment and adjust the optimal route-finding formula accordingly.Moreover,these devices and server modules must ensure that every packet is transmitted securely,which is possible only if it is encrypted with an encryption algorithm.For this purpose,a decision tree-enabled device-to-server authentication algorithm is presented where every device and server must take part in the offline phase.Simulation results have verified that the proposed distributed communication approach has the potential to ensure the integrity and confidentiality of data during transmission.Moreover,the proposed approach has outperformed the existing approaches in terms of communication cost,processing overhead,end-to-end delay,packet loss ratio,and throughput.Finally,the proposed approach is adoptable in different networking infrastructures.展开更多
Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resourc...Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.展开更多
IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse applications.Due to their heterogeneous nature and constrai...IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse applications.Due to their heterogeneous nature and constrained resources,as well as the growing trend of using smart gadgets,there are privacy and security issues that are not adequately managed by conventional securitymeasures.This review offers a thorough analysis of contemporary AI solutions designed to enhance security within IoT ecosystems.The intersection of AI technologies,including ML,and blockchain,with IoT privacy and security is systematically examined,focusing on their efficacy in addressing core security issues.The methodology involves a detailed exploration of existing literature and research on AI-driven privacy-preserving security mechanisms in IoT.The reviewed solutions are categorized based on their ability to tackle specific security challenges.The review highlights key advancements,evaluates their practical applications,and identifies prevailing research gaps and challenges.The findings indicate that AI solutions,particularly those leveraging ML and blockchain,offerpromising enhancements to IoT privacy and security by improving threat detection capabilities and ensuring data integrity.This paper highlights how AI technologies might strengthen IoT privacy and security and offer suggestions for upcoming studies intended to address enduring problems and improve the robustness of IoT networks.展开更多
The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other a...The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other attacks.This study proposes a novel approach,named NADSA,to detect and isolate sinkhole attacks.NADSA is based on the RPL protocol and consists of two detection phases.In the first phase,the minimum possible hop count between the sender and receiver is calculated and compared with the sender’s reported hop count.The second phase utilizes the number of DIO messages to identify suspicious nodes and then applies a fuzzification process using RSSI,ETX,and distance measurements to confirm the presence of a malicious node.The proposed method is extensively simulated in highly lossy and sparse network environments with varying numbers of nodes.The results demonstrate that NADSA achieves high efficiency,with PDRs of 68%,70%,and 73%;E2EDs of 81,72,and 60 ms;TPRs of 89%,83%,and 80%;and FPRs of 24%,28%,and 33%.NADSA outperforms existing methods in challenging network conditions,where traditional approaches typically degrade in effectiveness.展开更多
The increasing reliance on digital infrastructure in modern healthcare systems has introduced significant cybersecurity challenges,particularly in safeguarding sensitive patient data and maintaining the integrity of m...The increasing reliance on digital infrastructure in modern healthcare systems has introduced significant cybersecurity challenges,particularly in safeguarding sensitive patient data and maintaining the integrity of medical services.As healthcare becomes more data-driven,cyberattacks targeting these systems continue to rise,necessitating the development of robust,domain-adapted Intrusion Detection Systems(IDS).However,current IDS solutions often lack access to domain-specific datasets that reflect realistic threat scenarios in healthcare.To address this gap,this study introduces HCKDDCUP,a synthetic dataset modeled on the widely used KDDCUP benchmark,augmented with healthcare-relevant attributes such as patient data,treatments,and diagnoses to better simulate the unique conditions of clinical environments.This research applies standard machine learning algorithms Random Forest(RF),Decision Tree(DT),and K-Nearest Neighbors(KNN)to both the KDDCUP and HCKDDCUP datasets.The methodology includes data preprocessing,feature selection,dimensionality reduction,and comparative performance evaluation.Experimental results show that the RF model performed best,achieving 98%accuracy on KDDCUP and 99%on HCKDDCUP,highlighting its effectiveness in detecting cyber intrusions within a healthcare-specific context.This work contributes a valuable resource for future research and underscores the need for IDS development tailored to sector-specific requirements.展开更多
Thunderstorm detection based on the Atmospheric Electric Field(AEF)has evolved from time-domain models to space-domain models.It is especially important to evaluate and determine the particularly Weather Attribute(WA)...Thunderstorm detection based on the Atmospheric Electric Field(AEF)has evolved from time-domain models to space-domain models.It is especially important to evaluate and determine the particularly Weather Attribute(WA),which is directly related to the detection reliability and authenticity.In this paper,a strategy is proposed to integrate three currently competitive WA's evaluation methods.First,a conventional evaluation method based on AEF statistical indicators is selected.Subsequent evaluation approaches include competing AEF-based predicted value intervals,and AEF classification based on fuzzy c-means.Different AEF attributes contribute to a more accurate AEF classification to different degrees.The resulting dynamic weighting applied to these attributes improves the classification accuracy.Each evaluation method is applied to evaluate the WA of a particular AEF,to obtain the corresponding evaluation score.The integration in the proposed strategy takes the form of a score accumulation.Different cumulative score levels correspond to different final WA results.Thunderstorm imaging is performed to visualize thunderstorm activities using those AEFs already evaluated to exhibit thunderstorm attributes.Empirical results confirm that the proposed strategy effectively and reliably images thunderstorms,with a 100%accuracy of WA evaluation.This is the first study to design an integrated thunderstorm detection strategy from a new perspective of WA evaluation,which provides promising solutions for a more reliable and flexible thunderstorm detection.展开更多
Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution g...Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers.展开更多
Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilit...Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金Research Center of the College of Computer and Information Sciences,King Saud University,Grant/Award Number:RSPD2024R947King Saud University。
文摘Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing capacity.Despite the popularity of ML techniques,only a few research studies have focused on the application of ML especially supervised learning techniques in Requirement Engineering(RE)activities to solve the problems that occur in RE activities.The authors focus on the systematic mapping of past work to investigate those studies that focused on the application of supervised learning techniques in RE activities between the period of 2002–2023.The authors aim to investigate the research trends,main RE activities,ML algorithms,and data sources that were studied during this period.Forty-five research studies were selected based on our exclusion and inclusion criteria.The results show that the scientific community used 57 algorithms.Among those algorithms,researchers mostly used the five following ML algorithms in RE activities:Decision Tree,Support Vector Machine,Naïve Bayes,K-nearest neighbour Classifier,and Random Forest.The results show that researchers used these algorithms in eight major RE activities.Those activities are requirements analysis,failure prediction,effort estimation,quality,traceability,business rules identification,content classification,and detection of problems in requirements written in natural language.Our selected research studies used 32 private and 41 public data sources.The most popular data sources that were detected in selected studies are the Metric Data Programme from NASA,Predictor Models in Software Engineering,and iTrust Electronic Health Care System.
文摘In the era of Industry 4.0,conditionmonitoring has emerged as an effective solution for process industries to optimize their operational efficiency.Condition monitoring helps minimize unplanned downtime,extending equipment lifespan,reducing maintenance costs,and improving production quality and safety.This research focuses on utilizing Bayesian search-based machine learning and deep learning approaches for the condition monitoring of industrial equipment.The study aims to enhance predictive maintenance for industrial equipment by forecasting vibration values based on domain-specific feature engineering.Early prediction of vibration enables proactive interventions to minimize downtime and extend the lifespan of critical assets.A data set of load information and vibration values from a heavy-duty industrial slip ring induction motor(4600 kW)and gearbox equipped with vibration sensors is used as a case study.The study implements and compares six machine learning models with the proposed Bayesian-optimized stacked Long Short-Term Memory(LSTM)model.The hyperparameters used in the implementation of models are selected based on the Bayesian optimization technique.Comparative analysis reveals that the proposed Bayesian optimized stacked LSTM outperforms other models,showcasing its capability to learn temporal features as well as long-term dependencies in time series information.The implemented machine learning models:Linear Regression(LR),RandomForest(RF),Gradient Boosting Regressor(GBR),ExtremeGradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Support Vector Regressor(SVR)displayed a mean squared error of 0.9515,0.4654,0.1849,0.0295,0.2127 and 0.0273,respectively.The proposed model predicts the future vibration characteristics with a mean squared error of 0.0019 on the dataset containing motor load information and vibration characteristics.The results demonstrate that the proposed model outperforms other models in terms of other evaluation metrics with a mean absolute error of 0.0263 and 0.882 as a coefficient of determination.Current research not only contributes to the comparative performance of machine learning models in condition monitoring but also showcases the practical implications of employing these techniques.By transitioning fromreactive to proactive maintenance strategies,industries canminimize downtime,reduce costs,and prolong the lifespan of crucial assets.This study demonstrates the practical advantages of transitioning from reactive to proactive maintenance strategies using ML-based condition monitoring.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University via Grant No.(QU-APC-2025).
文摘The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.
基金supported by the“Technology Commercialization Collaboration Platform Construction”project of the Innopolis Foundation(Project Number:2710033536)the Competitive Research Fund of The University of Aizu,Japan.
文摘Sentiment Analysis,a significant domain within Natural Language Processing(NLP),focuses on extracting and interpreting subjective information-such as emotions,opinions,and attitudes-from textual data.With the increasing volume of user-generated content on social media and digital platforms,sentiment analysis has become essential for deriving actionable insights across various sectors.This study presents a systematic literature review of sentiment analysis methodologies,encompassing traditional machine learning algorithms,lexicon-based approaches,and recent advancements in deep learning techniques.The review follows a structured protocol comprising three phases:planning,execution,and analysis/reporting.During the execution phase,67 peer-reviewed articles were initially retrieved,with 25 meeting predefined inclusion and exclusion criteria.The analysis phase involved a detailed examination of each study’s methodology,experimental setup,and key contributions.Among the deep learning models evaluated,Long Short-Term Memory(LSTM)networks were identified as the most frequently adopted architecture for sentiment classification tasks.This review highlights current trends,technical challenges,and emerging opportunities in the field,providing valuable guidance for future research and development in applications such as market analysis,public health monitoring,financial forecasting,and crisis management.
文摘The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication.
文摘Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.
基金supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2023RIS-009).
文摘In a cloud environment,graphics processing units(GPUs)are the primary devices used for high-performance computation.They exploit flexible resource utilization,a key advantage of cloud environments.Multiple users share GPUs,which serve as coprocessors of central processing units(CPUs)and are activated only if tasks demand GPU computation.In a container environment,where resources can be shared among multiple users,GPU utilization can be increased by minimizing idle time because the tasks of many users run on a single GPU.However,unlike CPUs and memory,GPUs cannot logically multiplex their resources.Additionally,GPU memory does not support over-utilization:when it runs out,tasks will fail.Therefore,it is necessary to regulate the order of execution of concurrently running GPU tasks to avoid such task failures and to ensure equitable GPU sharing among users.In this paper,we propose a GPU task execution order management technique that controls GPU usage via time-based containers.The technique seeks to ensure equal GPU time among users in a container environment to prevent task failures.In the meantime,we use a deferred processing method to prevent GPU memory shortages when GPU tasks are executed simultaneously and to determine the execution order based on the GPU usage time.As the order of GPU tasks cannot be externally adjusted arbitrarily once the task commences,the GPU task is indirectly paused by pausing the container.In addition,as container pause/unpause status is based on the information about the available GPU memory capacity,overuse of GPU memory can be prevented at the source.As a result,the strategy can prevent task failure and the GPU tasks can be experimentally processed in appropriate order.
基金The author Dr.Arshiya S.Ansari extends the appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through the project number(R-2025-1538).
文摘Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1I1A3049788).
文摘In today’s digital era,the rapid evolution of image editing technologies has brought about a significant simplification of image manipulation.Unfortunately,this progress has also given rise to the misuse of manipulated images across various domains.One of the pressing challenges stemming from this advancement is the increasing difficulty in discerning between unaltered and manipulated images.This paper offers a comprehensive survey of existing methodologies for detecting image tampering,shedding light on the diverse approaches employed in the field of contemporary image forensics.The methods used to identify image forgery can be broadly classified into two primary categories:classical machine learning techniques,heavily reliant on manually crafted features,and deep learning methods.Additionally,this paper explores recent developments in image forensics,placing particular emphasis on the detection of counterfeit colorization.Image colorization involves predicting colors for grayscale images,thereby enhancing their visual appeal.The advancements in colorization techniques have reached a level where distinguishing between authentic and forged images with the naked eye has become an exceptionally challenging task.This paper serves as an in-depth exploration of the intricacies of image forensics in the modern age,with a specific focus on the detection of colorization forgery,presenting a comprehensive overview of methodologies in this critical field.
基金supported by the Princess Nourah bint Abdulrahman University Riyadh,Saudi Arabia,through Project number(PNURSP2025R235).
文摘The Internet of Things(IoT)is a smart infrastructure where devices share captured data with the respective server or edge modules.However,secure and reliable communication is among the challenging tasks in these networks,as shared channels are used to transmit packets.In this paper,a decision tree is integrated with other metrics to form a secure distributed communication strategy for IoT.Initially,every device works collaboratively to form a distributed network.In this model,if a device is deployed outside the coverage area of the nearest server,it communicates indirectly through the neighboring devices.For this purpose,every device collects data from the respective neighboring devices,such as hop count,average packet transmission delay,criticality factor,link reliability,and RSSI value,etc.These parameters are used to find an optimal route from the source to the destination.Secondly,the proposed approach has enabled devices to learn from the environment and adjust the optimal route-finding formula accordingly.Moreover,these devices and server modules must ensure that every packet is transmitted securely,which is possible only if it is encrypted with an encryption algorithm.For this purpose,a decision tree-enabled device-to-server authentication algorithm is presented where every device and server must take part in the offline phase.Simulation results have verified that the proposed distributed communication approach has the potential to ensure the integrity and confidentiality of data during transmission.Moreover,the proposed approach has outperformed the existing approaches in terms of communication cost,processing overhead,end-to-end delay,packet loss ratio,and throughput.Finally,the proposed approach is adoptable in different networking infrastructures.
基金funded by Researchers Supporting Project Number(RSPD2025R947)King Saud University,Riyadh,Saudi Arabia.
文摘Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.
基金The author Dr.Arshiya Sajid Ansari extends the appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through the project number(R-2025-1706).
文摘IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse applications.Due to their heterogeneous nature and constrained resources,as well as the growing trend of using smart gadgets,there are privacy and security issues that are not adequately managed by conventional securitymeasures.This review offers a thorough analysis of contemporary AI solutions designed to enhance security within IoT ecosystems.The intersection of AI technologies,including ML,and blockchain,with IoT privacy and security is systematically examined,focusing on their efficacy in addressing core security issues.The methodology involves a detailed exploration of existing literature and research on AI-driven privacy-preserving security mechanisms in IoT.The reviewed solutions are categorized based on their ability to tackle specific security challenges.The review highlights key advancements,evaluates their practical applications,and identifies prevailing research gaps and challenges.The findings indicate that AI solutions,particularly those leveraging ML and blockchain,offerpromising enhancements to IoT privacy and security by improving threat detection capabilities and ensuring data integrity.This paper highlights how AI technologies might strengthen IoT privacy and security and offer suggestions for upcoming studies intended to address enduring problems and improve the robustness of IoT networks.
文摘The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other attacks.This study proposes a novel approach,named NADSA,to detect and isolate sinkhole attacks.NADSA is based on the RPL protocol and consists of two detection phases.In the first phase,the minimum possible hop count between the sender and receiver is calculated and compared with the sender’s reported hop count.The second phase utilizes the number of DIO messages to identify suspicious nodes and then applies a fuzzification process using RSSI,ETX,and distance measurements to confirm the presence of a malicious node.The proposed method is extensively simulated in highly lossy and sparse network environments with varying numbers of nodes.The results demonstrate that NADSA achieves high efficiency,with PDRs of 68%,70%,and 73%;E2EDs of 81,72,and 60 ms;TPRs of 89%,83%,and 80%;and FPRs of 24%,28%,and 33%.NADSA outperforms existing methods in challenging network conditions,where traditional approaches typically degrade in effectiveness.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2501).
文摘The increasing reliance on digital infrastructure in modern healthcare systems has introduced significant cybersecurity challenges,particularly in safeguarding sensitive patient data and maintaining the integrity of medical services.As healthcare becomes more data-driven,cyberattacks targeting these systems continue to rise,necessitating the development of robust,domain-adapted Intrusion Detection Systems(IDS).However,current IDS solutions often lack access to domain-specific datasets that reflect realistic threat scenarios in healthcare.To address this gap,this study introduces HCKDDCUP,a synthetic dataset modeled on the widely used KDDCUP benchmark,augmented with healthcare-relevant attributes such as patient data,treatments,and diagnoses to better simulate the unique conditions of clinical environments.This research applies standard machine learning algorithms Random Forest(RF),Decision Tree(DT),and K-Nearest Neighbors(KNN)to both the KDDCUP and HCKDDCUP datasets.The methodology includes data preprocessing,feature selection,dimensionality reduction,and comparative performance evaluation.Experimental results show that the RF model performed best,achieving 98%accuracy on KDDCUP and 99%on HCKDDCUP,highlighting its effectiveness in detecting cyber intrusions within a healthcare-specific context.This work contributes a valuable resource for future research and underscores the need for IDS development tailored to sector-specific requirements.
基金supported in part by the National Natural Science Foundation of China under Grant 62171228in part by the National Key R&D Program of China under Grant 2021YFE0105500in part by the Program of China Scholarship Council under Grant 202209040027。
文摘Thunderstorm detection based on the Atmospheric Electric Field(AEF)has evolved from time-domain models to space-domain models.It is especially important to evaluate and determine the particularly Weather Attribute(WA),which is directly related to the detection reliability and authenticity.In this paper,a strategy is proposed to integrate three currently competitive WA's evaluation methods.First,a conventional evaluation method based on AEF statistical indicators is selected.Subsequent evaluation approaches include competing AEF-based predicted value intervals,and AEF classification based on fuzzy c-means.Different AEF attributes contribute to a more accurate AEF classification to different degrees.The resulting dynamic weighting applied to these attributes improves the classification accuracy.Each evaluation method is applied to evaluate the WA of a particular AEF,to obtain the corresponding evaluation score.The integration in the proposed strategy takes the form of a score accumulation.Different cumulative score levels correspond to different final WA results.Thunderstorm imaging is performed to visualize thunderstorm activities using those AEFs already evaluated to exhibit thunderstorm attributes.Empirical results confirm that the proposed strategy effectively and reliably images thunderstorms,with a 100%accuracy of WA evaluation.This is the first study to design an integrated thunderstorm detection strategy from a new perspective of WA evaluation,which provides promising solutions for a more reliable and flexible thunderstorm detection.
基金supported via funding from Prince Sattam Bin Abdulaziz University project number(PSAU/2025/R/1446).
文摘Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)-Innovative Human Resource Development for Local Intellectualization program grant funded by the Korea government(MSIT)(IITP-2025-RS-2023-00259678)by INHA UNIVERSITY Research Grant.
文摘Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms.