期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-domain Spectral Immersed Interface Method for Solving Elliptic Equation with a Global Description of Discontinuous Functions 被引量:1
1
作者 JIANG Yongsong LIANG An +1 位作者 SUN Xiaofeng JING Xiaodong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第3期297-310,共14页
This paper presents the extension of the global description approach of a discontinuous function, which is proposed in the previous paper, to a spectral domain decomposition method. This multi-domain spectral immersed... This paper presents the extension of the global description approach of a discontinuous function, which is proposed in the previous paper, to a spectral domain decomposition method. This multi-domain spectral immersed interlace method(IIM) divides the whole computation domain into the smooth and discontinuous parts. Fewer points on the smooth domains are used via taking advantage of the high accuracy property of the spectral method, but more points on the discontinuous domains are employed to enhance the resolution of the calculation. Two that the domain decomposition technique can placed around the discontinuity. The present reached, in spite of the enlarged computational discontinuous problems are tested to verify the present method. The results show reduce the error of the spectral IIM, especially when more collocation points are method is t:avorable for the reason that the same level of the accuracy can be domain. 展开更多
关键词 computational aerodynamics immersed interface method immersed boundary method Chebyshev spectral method domain decomposition method
原文传递
A second-order numerical method for elliptic equations with singular sources using local flter
2
作者 Jiang Yongsong Fang Le +2 位作者 Jing Xiaodong Sun Xiaofeng Francis Leboeuf 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1398-1408,共11页
The presence of Dirac delta function in differential equation can lead to a discontinuity,which may degrade the accuracy of related numerical methods.To improve the accuracy,a secondorder numerical method for elliptic... The presence of Dirac delta function in differential equation can lead to a discontinuity,which may degrade the accuracy of related numerical methods.To improve the accuracy,a secondorder numerical method for elliptic equations with singular sources is introduced by employing a local kernel flter.In this method,the discontinuous equation is convoluted with the kernel function to obtain a more regular one.Then the original equation is replaced by this fltered equation around the singular points,to obtain discrete numerical form.The unchanged equations at the other points are discretized by using a central difference scheme.1D and 2D examples are carried out to validate the correctness and accuracy of the present method.The results show that a second-order of accuracy can be obtained in the fltering framework with an appropriate integration rule.Furthermore,the present method does not need any jump condition,and also has extremely simple form that can be easily extended to high dimensional cases and complex geometry. 展开更多
关键词 Computational aerodynamics Immersed boundary method Immersed interface method Kernel flter Singular source
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部