期刊文献+
共找到3,023篇文章
< 1 2 152 >
每页显示 20 50 100
A Review of Infrared Thermography Applications for Civil Infrastructure
1
作者 Prabal Shrestha Onur Avci +4 位作者 Sahabeddin Rifai Feras Abla Michael Seek Karl Barth Udaya Halabe 《Structural Durability & Health Monitoring》 2025年第2期193-231,共39页
Civil infrastructure is continuously subject to aging and deterioration due to multiple factors,which lead to a decline in performance and impact structural health.Accumulated damage on structures increases operationa... Civil infrastructure is continuously subject to aging and deterioration due to multiple factors,which lead to a decline in performance and impact structural health.Accumulated damage on structures increases operational costs and poses significant risks to public safety.Effective maintenance,repair,and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability.Non-Destructive Evaluation(NDE)methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards.Within the last decade,there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment.This paper aims to review one of those methods,namely,Infrared Thermography(IRT),and its applications in civil infrastructure.A comprehensive review is presented by investigating numerous journal articles,research papers,and technical reports describing numerous IRT applications for bridges,buildings,and general civil structures made from different materials.The capability of IRT to identify and pinpoint anomalies,typically in the early stages of degradation,has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation.Furthermore,the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures.It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment.With further advancement and fine-tuning of the available techniques,it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure. 展开更多
关键词 Infrared thermography(IRT) civil infrastructure non-destructive evaluation(NDE)
在线阅读 下载PDF
Biodegradability of bioplastics in different aquatic environments:A systematic review
2
作者 Maria Cristina Lavagnolo Valentina Poli +1 位作者 Anna Maria Zampini Valentina Grossule 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第8期169-181,共13页
Bioplastics were first introduced as environmentally friendly materials,with properties similar to those of conventional plastics.A bioplastic is defined as biodegradable if it can be decomposed into carbon dioxide un... Bioplastics were first introduced as environmentally friendly materials,with properties similar to those of conventional plastics.A bioplastic is defined as biodegradable if it can be decomposed into carbon dioxide under aerobic degradation,or methane and CO_(2)under anaerobic conditions,inorganic compounds,and new cellular biomass,by the action of naturally occurring microorganisms.This definition however does not provide any information on the environmental conditions,timescale and extent at which decomposition processes should occur.With regard to the aquatic environment,recognized standards have been established to assess the ability of plastics to undergo biodegradation;however,these standards fail to provide clear targets to be met to allow labelling of a bioplastic as biodegradable.Moreover,these standards grant the user an extensive leeway in the choice of process parameters.For these reasons,the comparison of results deriving from different studies is challenging.The authors analysed and discussed the degree of biodegradability of a series of biodegradable bioplastics in aquatic environments(both fresh and salt water)using the results obtained in the laboratory and from on-site testing in the context of different research studies.Biochemical Oxygen Demand(BOD),CO_(2)evolution,surface erosion and weight loss were the main parameters used by researchers to describe the percentage of biodegradation.The results showed a large variability both in weight loss and BOD,even when evaluating the same type of bioplastics.This confirms the need for a reference range of values to be established with regard to parameters applied in defining the biodegradability of bioplastics. 展开更多
关键词 BIODEGRADATION Bioplastic PLASTIC Natural environment Plastic waste
原文传递
Bi-directional interaction of joint shear strength in non-seismically designed corner RC beam-column connections under seismic loading 被引量:1
3
作者 Mohammad Amir Najafgholipour Negin Ahmadi rad Akanshu Sharma 《Earthquake Engineering and Engineering Vibration》 2025年第1期135-153,共19页
Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the informa... Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well. 展开更多
关键词 beam-column joints joint shear failure bidirectional loading interaction curve finite element study
在线阅读 下载PDF
Stabilization of clay soil using alkali-activated sewage sludge 被引量:1
4
作者 Shahram Pourakbar Atiyeh Maneshmoaveni +3 位作者 Danial Moazami Laura Moretti Amirhossein Yousefi Nuno Cristelo 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3213-3224,共12页
This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main cr... This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects. 展开更多
关键词 Soil stabilization Toxicity leaching Alkaline activation Sewage sludge Ground improvement
在线阅读 下载PDF
Influence of phytoplankton,bacteria and viruses on nutrient supply in tropical waters 被引量:1
5
作者 Zhi Yang Sim Kwan Chien Goh +3 位作者 Nur Hanisah binte Sukarji Feijian Mao Yiliang He Karina Yew-Hoong Gin 《Journal of Environmental Sciences》 2025年第5期174-186,共13页
Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially i... Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially impact carbon(C),nitrogen(N)and phosphorus(P)biogeochemistry through their respective roles.This study characterizes the phytoplankton,bacteria and virus communities and the elemental composition of various C,N and P nutrients flow over three diel cycles in tropical urban lake.Our results show that ratios of C:N:P fluctuated strongly from the lack of dissolved organic phosphorus(DOP)and PO_(4).Specifically,green algae peaked during day time and exudate dissolved organic matter(DOM)that strongly modulate dissolved organic carbon(DOC):DOP ratio to diel DOP limitation.Multiple linear regression and Stella modelling emphasize the roles of viruses together with Synechococcus as important nutrient recyclers of NH_(4)and PO_(4)in nutrients-limited waters.Respective normalised surface PO_(4)and combined surface and bottom NH_(4)concentration selected both viruses and Synechococcus as important drivers.Process model of N and P biogeochemical cycles can achieve 69%and 57%similar to observed concentration of NH_(4)and PO_(4),respectively.A short latent period of 9 hr was calculated,in addition to the calibrated high infectivity of viruses to Synechococcus.Taken together,the rapid turn-over between Synechococcus and viruses has biogeochemical significance,where the rapid recycling of essential nutrients allows for shortcuts in the N and P cycle,supporting a wide range of microbes. 展开更多
关键词 DIEL PHYTOPLANKTON BACTERIA Virus NUTRIENTS Element ratios
原文传递
Interpretable Machine Learning Method for Compressive Strength Prediction and Analysis of Pure Fly Ash-based Geopolymer Concrete
6
作者 SHI Yuqiong LI Jingyi +1 位作者 ZHANG Yang LI Li 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期65-78,共14页
In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive streng... In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive strength.In this study,505 groups of data were collected,and a new database of compressive strength of PFGC was constructed.In order to establish an accurate prediction model of compressive strength,five different types of machine learning networks were used for comparative analysis.The five machine learning models all showed good compressive strength prediction performance on PFGC.Among them,R2,MSE,RMSE and MAE of decision tree model(DT)are 0.99,1.58,1.25,and 0.25,respectively.While R2,MSE,RMSE and MAE of random forest model(RF)are 0.97,5.17,2.27 and 1.38,respectively.The two models have high prediction accuracy and outstanding generalization ability.In order to enhance the interpretability of model decision-making,we used importance ranking to obtain the perception of machine learning model to 13 variables.These 13 variables include chemical composition of fly ash(SiO_(2)/Al_(2)O_(3),Si/Al),the ratio of alkaline liquid to the binder,curing temperature,curing durations inside oven,fly ash dosage,fine aggregate dosage,coarse aggregate dosage,extra water dosage and sodium hydroxide dosage.Curing temperature,specimen ages and curing durations inside oven have the greatest influence on the prediction results,indicating that curing conditions have more prominent influence on the compressive strength of PFGC than ordinary Portland cement concrete.The importance of curing conditions of PFGC even exceeds that of the concrete mix proportion,due to the low reactivity of pure fly ash. 展开更多
关键词 machine learning pure fly ash geopolymer compressive strength feature perception
原文传递
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
7
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
在线阅读 下载PDF
Constitutive modeling of sedimentary argillaceous rocks for deep geological disposal of radioactive waste
8
作者 Davood Yazdani Cherati Jean Vaunat Antonio Gens Sole 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6742-6757,共16页
Argillaceous rocks are considered ideal host geomaterials for deep geological disposal of radioactive waste due to their low permeability,notable sorption capacity,low diffusion coefficient,limited natural fracturing,... Argillaceous rocks are considered ideal host geomaterials for deep geological disposal of radioactive waste due to their low permeability,notable sorption capacity,low diffusion coefficient,limited natural fracturing,and capacity for self-sealing.In line with this objective,substantial efforts have been made in the literature over the past decades to model their behavior numerically.Yet,accurately modeling the hydromechanical behavior of argillaceous rocks remains a significant challenge in geomechanics,highlighting the need for further research.Despite the wide variety of geomaterials in this class,common behavioral features are observed,such as anisotropy,structural degradation,strain localization,creep,heterogeneity,and self-sealing.This study summarizes these common features observed in laboratory and field settings and reviews the developed approaches for modeling each behavioral aspect.The goal is to establish a comprehensive framework for the practical modeling of these geomaterials,specifically aimed at applications in the geological disposal of radioactive waste. 展开更多
关键词 Argillaceous rocks Structural degradation Strain localization ANISOTROPY Creep Multi-porosity HETEROGENEITY SELF-SEALING
在线阅读 下载PDF
Architecture characterization of orchard trees for mechanical behavior investigations
9
作者 Min Kyung Jeon Matthew Burrall +2 位作者 Tae Hyuk Kwon Jason T.DeJong Alejandro Martinez 《Biogeotechnics》 2025年第2期1-12,共12页
Characterizing the architecture of tree root systems is essential to advance the development of root-inspired anchorage in engineered systems.This study explores the structural root architectures of orchard trees to u... Characterizing the architecture of tree root systems is essential to advance the development of root-inspired anchorage in engineered systems.This study explores the structural root architectures of orchard trees to understand the interplays between the mechanical behavior of roots and the root architecture.Full three-dimensional(3D)models of natural tree root systems,Lovell,Marianna,and Myrobalan,that were extracted from the ground by vertical pullout are reconstructed through photogrammetry and later skeletonized as nodes and root branch segments.Combined analyses of the full 3D models and skeletonized models enable a detailed examination of basic bulk properties and quantification of architectural parameters.While the root segments are divided into three categories,trunk root,main lateral root,and remaining roots,the patterns in branching and diameter distributions show significant differences between the trunk and main laterals versus the remaining lateral roots.In general,the branching angle decreases over the sequence of bifurcations.The main lateral roots near the trunk show significant spreading while the lateral roots near the ends grow roughly parallel to the parent root.For branch length,the roots bifurcate more frequently near the trunk and later they grow longer.Local thickness analysis confirms that the root diameter decays at a higher rate near the trunk than in the remaining lateral roots,while the total cross-sectional area across a bifurcation node remains mostly conserved.The histograms of branching angle,and branch length and thickness gradient can be described using lognormal and exponential distributions,respectively.This unique study presents data to characterize mechanically important structural roots,which may help link root architecture to the mechanical behaviors of root structures. 展开更多
关键词 Bio-inspired foundation Root architecture 3D root model SKELETON Statistical variation Mechanical pullout test
在线阅读 下载PDF
Investigation of hanging crosstie problem at bridge approaches:a train–track–bridge model coupled with discrete element method
10
作者 Zhongyi Liu Wenjing Li +2 位作者 Travis A.Shoemaker Erol Tutumluer Youssef M.A.Hashash 《Railway Engineering Science》 2025年第3期458-473,共16页
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio... Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations. 展开更多
关键词 Hanging crosstie Crosstie gap Transition zone Model coupling Discrete element method Train-track model
在线阅读 下载PDF
Fully Recycled Syntheses Using Recycled Concrete Powder, Oyster Shell and Wood Powder: Effect of Combined Ground Treatment on Mechanical Strength and FTIR, XRD, and SEM Characterization
11
作者 Ejazulhaq Rahimi Yuma Kawasaki +1 位作者 Ayane Yui Yuta Yamachi 《Open Journal of Composite Materials》 2025年第1期44-57,共14页
The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from o... The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from oyster shell farming. However, there is a lack of evidence on the possibility of producing a fully recycled composite consisting of recycled concrete and oyster shell without the need for new cement and natural aggregates. In this study, recycled concrete powder (RCP) and oyster shell were used to produce a green composite. Separate ground and combined ground (separate ground and co-ground) RCP and oyster shells are used to determine the effects of grinding approaches on the mechanical and chemical properties of the composite. The composite samples were molded via press molding by applying 30 MPa of pressure for 10 minutes. The results revealed that the composite prepared via the combined ground approach presented the highest flexural strength compared to the separate ground and unground samples. The FTIR and XRD characterization results revealed no chemical or phase alterations in the raw materials or the resulting composites before and after grinding. SEM analysis revealed that combined grinding reduced the particles’ size and improved the dispersion of the mixture, thereby increasing the strength. 展开更多
关键词 Oyster Shells GRINDING Recycled Concrete Powder Waste Wood Composite
在线阅读 下载PDF
Bio-electrokinetic improvement of deltaic soil
12
作者 Mohammad Nabizadeh Abbas Soroush +1 位作者 Seyed Mohammad Fattahi Abolfazl Eslami 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3253-3264,共12页
In addressing problematic soils,geotechnical engineers employ two key strategies:compatibility and improvement.This study focuses on soft and CL deltaic sediments,and seeks to enhance cementation by investigating micr... In addressing problematic soils,geotechnical engineers employ two key strategies:compatibility and improvement.This study focuses on soft and CL deltaic sediments,and seeks to enhance cementation by investigating microbially-induced calcium carbonate precipitation(MICP).Sporosarcina pasteurii bacteria,together with a cementation solution(urea and calcium-containing salt),were electrokinetically injected into deltaic clay soil from the Telar River in Iran.The initial samples,with a dry unit weight(γ_(d))of 12.75 kN/m^(3),underwent injections in two modes:simultaneous injection of the bacterial and cementation solutions and individual injection in a sequential order.Unconfined compression strength tests and laboratory vane shear tests were conducted to assess changes in soil strength parameters,while a consolidation test was performed to investigate alterations in soil settlement parameters.A comparative analysis with an electroosmosis control sample revealed a remarkable increase in compressive strength and undrained shear strength for MICP bio-electrokinetic improvement.Moreover,the consolidation test demonstrated that the compression index(C_(c))and recompression index(C_(r))exhibited a more pronounced decline in the simultaneous injection than individual injection.This highlights the dual impact of the bio-electrokinetic method,namely the enhancement of shear strength and the mitigation of settlement in deltaic clay soil.The calcium carbonate content was measured for the samples,and the results indicated a higher degree of participation for the samples subjected to simultaneous injection.Microstructure analyses were conducted on samples,and calcite and vaterite were observed in biocemented samples. 展开更多
关键词 Deltaic clay Microbially-induced calcium carbonate precipitation(MICP) Bio-electrokinetic improvement Injection methods Consolidation test
在线阅读 下载PDF
Seismic performance evaluation of mass timber buildings equipped with resilient and conventional friction devices
13
作者 Ashkan Hashemi Rajnil Lal 《Resilient Cities and Structures》 2025年第2期103-115,共13页
The application of mass timber elements in different structures has gained publicity over the last few years,pri-marily due to climate change adaptation policies and net zero carbon targets.Timber is a renewable const... The application of mass timber elements in different structures has gained publicity over the last few years,pri-marily due to climate change adaptation policies and net zero carbon targets.Timber is a renewable construction material that can outperform other building materials regarding environmental impact.However,when used in seismically active regions,its application has been limited due to the uncertainties on their seismic behaviour in respect with different design standards and limited ductility in conventional connections.Conventional timber connections typically suffer from stiffness and strength degradation under cyclic loads.Their repairability is also low due to permanent damage in the fasteners and the associated crushing in the wood fibres.The use of friction connections can be an efficient way to mitigate these issues.They offer many advantages as they are economical and yet provide a high level of reliable and continuous energy dissipation.In recent years,a new generation of friction connections has been developed that can provide self-centring behaviour(i.e.,the ability of the structure to return to its original position at the end of an earthquake).However,how these connections perform compared to a mass timber system with conventional timber connections is still unknown.Several studies in the literature have suggested that these connections can enhance the performance of mass timber structures.However,the seismic performance of such systems specifically in terms of base shear,response drifts and response accelerations-has not been thoroughly investigated.This paper examines various design aspects of conventional friction connections and self-centring friction connections,providing insights into their differences concerning key seismic performance indicators.It compares the seismic performance of mass timber buildings equipped with both solutions,highlighting their advantages and limitations and drawing conclusions based on the results.The key findings are that friction connections can provides a superior seismic performance for timber structures.However,that may need to be combined with a parallel system avoid residual displacements. 展开更多
关键词 Mass timber RESILIENCE DAMPERS FRICTION Energy dissipation
暂未订购
Assessing the Effects of Anaerobic Co-Digestion with FOG and Food Waste Residuals on Biogas Production
14
作者 Sumaiya Sharmin Daniel E. Meeroff +2 位作者 Lusnel Ferdinand Frederick Bloetscher Masoud Jahandar Lashaki 《Journal of Environmental Protection》 2025年第2期148-179,共32页
As global populations grow, the generation of various waste materials like fats, oils, and grease (FOG), fruit waste, and other perishable wastes increases concurrently. Disposal of these highly putrescible waste prod... As global populations grow, the generation of various waste materials like fats, oils, and grease (FOG), fruit waste, and other perishable wastes increases concurrently. Disposal of these highly putrescible waste products in landfills consumes valuable landfill space. Anaerobic digestion can transform these waste materials into valuable components, including fertilizer and biogas, reducing the demand for landfill space. The current study is based on the hypothesis that incorporating high-strength organic waste into conventional wastewater sludge can enhance the production of onsite biogas at wastewater treatment plants, therefore contributing to the reduction of the plant’s energy demands from the grid. The batch anaerobic biodegradability test assays were performed for 63 days to observe the impact on the biomethane yield from adding high-strength organic waste to the wastewater sludge and to investigate the combined effects of co-digesting two different preselected high-strength organic waste streams. Additionally, physicochemical characterization was performed on different fruit waste juicing residuals to indicate which fruit wastes might increase anaerobic digestion efficiency. The highest methane yield of 243 mL/gVS and 280 mL/gVS, respectively, were obtained with two mixtures having 10% FOG as the sole substrate and 10% FOG along with 10% fruit waste. The study also assessed the siloxane concentrations present as trace contaminants in the biogas samples. An initial economic feasibility assessment of food waste co-digestion at two wastewater treatment plants in Florida was conducted using the Co-Digestion Economic Analysis Tool (CoEAT) model. Based on the laboratory results, the analysis indicated a net positive benefit of $39,472 for a medium-sized plant (10 - 30 MGD capacity) and $52,488 for a larger plant (>30 MGD capacity) after 15 years, while diverting 10 - 18 tons/day of food waste from landfills with an anticipated minimal increase in sludge volume production at food waste additions less than 10% of the digester feed as stated in the literature. 展开更多
关键词 High-Strength Organic Waste FATS Oils and Grease Co-Digestion Economic Analysis Tool
在线阅读 下载PDF
Tracking spatial heterogeneity of local degree of saturation in unsaturated soils at different scales via X-ray computed tomography
15
作者 Zhenliang Jiang Jianbin Liu Anthony Kwan Leung 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3807-3818,共12页
Correctly tracking the evolution of spatial heterogeneity of local degree of saturation(Sr)in unsaturated soils is essential to explain the seepage phenomenon,which is crucial to assessing slope stability.Several meth... Correctly tracking the evolution of spatial heterogeneity of local degree of saturation(Sr)in unsaturated soils is essential to explain the seepage phenomenon,which is crucial to assessing slope stability.Several methods exist for quantifying the heterogeneity of local S_(r).However,a comprehensive comparison of these methods in terms of accuracy,relative advantages,and disadvantages is currently lacking.This paper presents a comparative analysis of local Sr obtained at multiple scales,ranging from the element scale to the slice,representative element volume(REV),pore,and voxel scales.The spatial heterogeneity of Sr in an unsaturated glass beads specimen at different matric suctions was visualised and quantified by multiscale X-ray micro-focus computed tomography image-based analysis methods.Local Sr obtained at different scales displayed a comparable trend along the sample depth,yet the REV-scale method showed a much scattered and discontinuous distribution.In contrast,the pore-scale method detected a distinct two-clustered,bimodal distribution of S_(r).The pore-scale method has the highest integrated resolution,as it has the highest spatial resolution(i.e.number of data points)and provides more information(i.e.number of extractable physical parameters).This method thus provides a more effective approach for tracking the spatial heterogeneity of S_(r).Based on this method,pore-scale water retention curves were determined,offering new quantitative means to characterise pore water heterogeneity and explainwater drainage processes such as hysteresis at the pore scale. 展开更多
关键词 Unsaturated soils Degree of saturation Computed tomography(CT)image-based analysis Multiscale Pore scale
在线阅读 下载PDF
Fragmentation characteristics of abrasive particles for hard rock drilling with waterjet energy parameter
16
作者 Hyun-Jong Cha Jun-Sik Park Tae-Min Oh 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2713-2726,共14页
The use of abrasive waterjets(AWJs)for rock drilling offers advantages in urbanized areas,locations that are vulnerable to damage,and piling operations.However,the overall operational cost of AWJ systems remains high ... The use of abrasive waterjets(AWJs)for rock drilling offers advantages in urbanized areas,locations that are vulnerable to damage,and piling operations.However,the overall operational cost of AWJ systems remains high compared to that of conventional drilling methods,which constrains the long-term industrial application of AWJs.For instance,the abrasive costs account for over 60%of the total process cost,but the recycling of abrasives remaining after drilling could significantly reduce machining costs.In this study,the post-impact characteristics of abrasives were explored,aiming to enhance their recyclability.The physical properties and particle distribution of used abrasives vary depending on the jet energy,ultimately affecting their recyclability and recycling rate.The particle properties of used abrasives(particle size distribution,particle shape,and mean particle size)were compared under different waterjet energy variables(standoff distance(SOD)and water pressure)and test conditions(dry and underwater).Furthermore,the collision stages of the abrasive particles within a waterjet system were classified and analyzed.The results revealed that abrasive fragmentation predominantly occurred due to internal collisions within the mixing chamber.In addition,an attempt was made to optimize the waterjet parameters for an economical and efficient operation.The findings of this study could contribute to enhancing the cost-effectiveness of AWJ systems for rock drilling applications. 展开更多
关键词 Hard rock drilling Abrasive waterjet(AWJ) Abrasive recycling Underground construction
在线阅读 下载PDF
Revealing hydro-mechanical properties of a natural fracture in lowpermeable shale
17
作者 Dario Sciandra Hyunbin Kim +2 位作者 Roman Y.Makhnenko Iman R.Kivi Víctor Vilarrasa 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6678-6690,共13页
Shales are considered to be sealing units for geological carbon storage and suitable host rocks for nuclear waste repositories due to their low permeability.However,the presence of fractures within these formations ca... Shales are considered to be sealing units for geological carbon storage and suitable host rocks for nuclear waste repositories due to their low permeability.However,the presence of fractures within these formations can significantly alter their flow,transport,and deformation behavior,which is central to the safe implementation of underground storage projects.Fractures not only increase the overall permeability of the rock but also contribute to its anisotropic behavior.This study focuses on characterizing the hydro-mechanical response of a natural fracture to aqueous fluid injection within a shaly specimen of Opalinus Clay.Laboratory experiments were performed to measure the mechanical and flow properties of intact and fractured rock specimens.Subsequently,a three-dimensional(3D)numerical model of water injection into the fractured specimen was developed.This model explicitly accounts for fracture geometry with strain-dependent aperture changes based on the cubic law assumption.Experimental measurements indicate that the fractured shale exhibits permeability up to two orders of magnitude higher than that of the intact counterpart.However,the simulations reveal that fracture permeability locally spans up to eight orders of magnitude.This significant change in permeability affects fluid flow within the rock specimen.The numerical model best reproduces the experimental results for a normal stiffness of the natural fracture of 18.7 MPa/mm at effective mean stresses below 15 MPa,and of 187.2 MPa/mm at higher confinements.This outcome highlights the critical importance of defining the hydro-mechanical parameters of fractures under realistic effective stress conditions with far-reaching implications for secure underground storage. 展开更多
关键词 Opalinus clay Laboratory experiments Cubic law Three-dimensional(3D)modeling Fracture stiffness Calibration
在线阅读 下载PDF
Efficacy of a New Geometric Stiffness Matrix for Buckling Load Analyses
18
作者 Barry T.Rosson 《Journal of Civil Engineering and Architecture》 2025年第1期22-26,共5页
This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely approximates the theoretically derived stiffness coefficients.Factors that influence the accur... This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely approximates the theoretically derived stiffness coefficients.Factors that influence the accuracy of the solution are studied using two columns,two braced frames,and one unbraced frame.Discussion is provided when the new geometric stiffness matrix can be used to improve the buckling load analysis results and when it may provide only nominal additional benefit. 展开更多
关键词 Geometric stiffness matrix buckling load stability functions structural frame
在线阅读 下载PDF
Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO
19
作者 Mohanad Diab Polychronis Kolokoussis Maria Antonia Brovelli 《Artificial Intelligence in Geosciences》 2025年第1期14-24,共11页
The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no ... The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no experience to intuitively interact with RS data of multiple formats is a potential provided by this integration.However,the use of AI and AI agents to help automate RS-related tasks is still in its infancy stage,with some frameworks and interfaces built on top of well-known vision language models(VLM)such as GPT-4,segment anything model(SAM),and grounding DINO.These tools do promise and draw guidelines on the potentials and limitations of existing solutions concerning the use of said models.In this work,the state of the art AI foundation models(FM)are reviewed and used in a multi-modal manner to ingest RS imagery input and perform zero-shot object detection using natural language.The natural language input is then used to define the classes or labels the model should look for,then,both inputs are fed to the pipeline.The pipeline presented in this work makes up for the shortcomings of the general knowledge FMs by stacking pre-processing and post-processing applications on top of the FMs;these applications include tiling to produce uniform patches of the original image for faster detection,outlier rejection of redundant bounding boxes using statistical and machine learning methods.The pipeline was tested with UAV,aerial and satellite images taken over multiple areas.The accuracy for the semantic segmentation showed improvement from the original 64%to approximately 80%-99%by utilizing the pipeline and techniques proposed in this work.GitHub Repository:MohanadDiab/LangRS. 展开更多
关键词 Foundation models Multi-modal models Vision language models Semantic segmentation Segment anything model Earth observation Remote sensing
在线阅读 下载PDF
Mechanical degradation of Longmaxi shale exposed to water-based fluids and supercritical carbon dioxide
20
作者 Jianting Du Andrew J.Whittle +2 位作者 Liming Hu Thibaut Divoux Jay N.Meegoda 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3378-3394,共17页
Mechanical alterations in shale formations due to exposure to water-based fracturing fluids and supercritical carbon dioxide(ScCO_(2))significantly affect the performance of shale gas exploration and CO_(2) geo-seques... Mechanical alterations in shale formations due to exposure to water-based fracturing fluids and supercritical carbon dioxide(ScCO_(2))significantly affect the performance of shale gas exploration and CO_(2) geo-sequestration.In this study,a hydrothermal(HT)reaction system was set up to treat Longmaxi shale samples of varying mineralogies(carbonate-,clay-,and quartz-rich)with different fluids,i.e.deionized(DI)water,2%potassium chloride(KCl)solution,and ScCO_(2) under HT conditions expected in shale formation.Statistical micro-indentation was conducted to characterize the mechanical property alterations caused by the shale-fluid interactions.An in situ morphological and mineralogical identification technique that combines scanning electron microscopy(SEM)and backscattered electron(BSE)imaging with energy-dispersive X-ray spectroscopy(EDS)was used to analyze the microstructural and mineralogical changes of the treated shale samples.Results show no apparent changes in the Young's modulus,E,and hardness,H,after treatment with DI water under room temperature(20℃)and atmospheric pressure for 7 d.In contrast,E and H were decreased by 31.2%and 37.5%at elevated temperature(80℃)and pressure(8 MPa),respectively.The addition of 2%KCl into DI water mitigated degradation of the mechanical properties.Quartz-rich shale specimens are the least sensitive to the water-based fracturing fluids,followed by the clay-rich and carbonate-rich shale formations.Based on in situ morphological and mineralogical identification,the primary factors for the mechanical degradation induced by water-based fluids include carbonate dissolution,clay swelling,and pyrite oxidation.Slight increases in the measured E and H and compression of porous clay aggregates were observed after treatment with ScCO_(2).The major factor contributing to the mechanical changes resulting from the exposure to scCO_(2) appears to be the competition between swelling caused by adsorption and compression of shale matrix. 展开更多
关键词 Shale gas Carbon dioxide geo-sequestration Grid micro-indentation Hydrothermal treatment Morphological and mineralogical identification
在线阅读 下载PDF
上一页 1 2 152 下一页 到第
使用帮助 返回顶部