The effects of structural modeling (bar slip in lap splice), ground motion selection process (epsilon effect) and size of a structure (number of bays and stories) on the fragility of reinforced concrete ordinary...The effects of structural modeling (bar slip in lap splice), ground motion selection process (epsilon effect) and size of a structure (number of bays and stories) on the fragility of reinforced concrete ordinary moment resisting frames are investigated. An analytical model is developed to account for bar slip in lap splice, which exhibits good correlation with existing experimental data. Then, incremental dynamic analysis is used to derive the fragility curves for four model structures. The model structures simulate frames with a different number of bays and stories. Finally, the fragility curves are corrected for the epsilon effect. The results show that slip in the lap splice can significantly increase the failure probability, especially for the collapse prevention limit state. At the same time, it is found that spectral shape has a significant impact on the fragility curves. It is also found that accounting for or ignoring bar slip or epsilon effects increases the probability of failure for larger structures. This indicates an unconservative bias in the safety of larger structures.展开更多
Reliable assessment of the lateral pile–soil interaction is of pronounced importance for the design of mono-pile foundations of offshore wind turbines. As the offshore engineering moves to deeper waters, the diameter...Reliable assessment of the lateral pile–soil interaction is of pronounced importance for the design of mono-pile foundations of offshore wind turbines. As the offshore engineering moves to deeper waters, the diameter of monopiles is getting larger, usually about 5 m and could be up to 8 m, which may lead to partially drained behaviors of sand in the vicinity of the pile and thus imply limitations of conventional design methods in which fully drained conditions were assumed. To shed light on this issue, a fully-coupled finite element model was established using an in-house developed finite element code DBLEAVES, incorporating a cyclic mobility constitutive model that is capable of describing the instantaneous contractive and dilative response of sands simultaneously. Triaxial and centrifuge model tests were conducted to calibrate the constitutive model and validate the pile–soil interaction model respectively. This is followed by a parametric study primarily focusing on the effects of loading rates. The initial stiffness of the p–y curve was found to increase with the loading rate whilst the bearing capacity showed the inverse,and the mechanism behind this phenomenon is examined in detail. Then an explicit model was developed to evaluate the development of excess pore pressure in the pile front upon lateral loading, and an upper boundary of normalized loading rate was identified to distinguish fully and partially drained conditions.展开更多
In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the B...In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two cases are obtained by using these methods and their results are shown in table.展开更多
In the design of rock sheds for the mitigation of risk due to rapid and long landslides, a crucial role is played by the evaluation of the impact force exerted by the flowing mass on the rock sheds. This paper is focu...In the design of rock sheds for the mitigation of risk due to rapid and long landslides, a crucial role is played by the evaluation of the impact force exerted by the flowing mass on the rock sheds. This paper is focused on the influencing factors of the impact force of dry granular flow onto rock shed and in particular on the evaluation of the maximum impact force. The coupled DEM-FEM model calibrated with small-scale physical experiment is used to simulate the movement of dry granular flow coupled with impact forces on the rock-shed. Based on the numerical results, three key stages were identified of impact process, namely startup streams slippery, impact and pile-up. The maximum impact force increases linearly with bulk density, and the maximum impact force exhibits a power law dependence on the impact height and slop angle respectively. The sensitivities of bulk density, impact height, and slope angle on the maximum impact force are: 1.0, 0.496, and 2.32 respectively in the benchmark model. The parameters with high sensitivity should be given priority in the design of the rock shed. The results obtained from this study are useful for facilitating design of shed against dry granular flow.展开更多
文摘The effects of structural modeling (bar slip in lap splice), ground motion selection process (epsilon effect) and size of a structure (number of bays and stories) on the fragility of reinforced concrete ordinary moment resisting frames are investigated. An analytical model is developed to account for bar slip in lap splice, which exhibits good correlation with existing experimental data. Then, incremental dynamic analysis is used to derive the fragility curves for four model structures. The model structures simulate frames with a different number of bays and stories. Finally, the fragility curves are corrected for the epsilon effect. The results show that slip in the lap splice can significantly increase the failure probability, especially for the collapse prevention limit state. At the same time, it is found that spectral shape has a significant impact on the fragility curves. It is also found that accounting for or ignoring bar slip or epsilon effects increases the probability of failure for larger structures. This indicates an unconservative bias in the safety of larger structures.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51988101 and 51679211)。
文摘Reliable assessment of the lateral pile–soil interaction is of pronounced importance for the design of mono-pile foundations of offshore wind turbines. As the offshore engineering moves to deeper waters, the diameter of monopiles is getting larger, usually about 5 m and could be up to 8 m, which may lead to partially drained behaviors of sand in the vicinity of the pile and thus imply limitations of conventional design methods in which fully drained conditions were assumed. To shed light on this issue, a fully-coupled finite element model was established using an in-house developed finite element code DBLEAVES, incorporating a cyclic mobility constitutive model that is capable of describing the instantaneous contractive and dilative response of sands simultaneously. Triaxial and centrifuge model tests were conducted to calibrate the constitutive model and validate the pile–soil interaction model respectively. This is followed by a parametric study primarily focusing on the effects of loading rates. The initial stiffness of the p–y curve was found to increase with the loading rate whilst the bearing capacity showed the inverse,and the mechanism behind this phenomenon is examined in detail. Then an explicit model was developed to evaluate the development of excess pore pressure in the pile front upon lateral loading, and an upper boundary of normalized loading rate was identified to distinguish fully and partially drained conditions.
文摘In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two cases are obtained by using these methods and their results are shown in table.
文摘In the design of rock sheds for the mitigation of risk due to rapid and long landslides, a crucial role is played by the evaluation of the impact force exerted by the flowing mass on the rock sheds. This paper is focused on the influencing factors of the impact force of dry granular flow onto rock shed and in particular on the evaluation of the maximum impact force. The coupled DEM-FEM model calibrated with small-scale physical experiment is used to simulate the movement of dry granular flow coupled with impact forces on the rock-shed. Based on the numerical results, three key stages were identified of impact process, namely startup streams slippery, impact and pile-up. The maximum impact force increases linearly with bulk density, and the maximum impact force exhibits a power law dependence on the impact height and slop angle respectively. The sensitivities of bulk density, impact height, and slope angle on the maximum impact force are: 1.0, 0.496, and 2.32 respectively in the benchmark model. The parameters with high sensitivity should be given priority in the design of the rock shed. The results obtained from this study are useful for facilitating design of shed against dry granular flow.