Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illust...Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.展开更多
Cardiac tissue engineering aims to efficiently replace or repair injured heart tissue using scaffolds,relevant cells,or their combination.While the combination of scaffolds and relevant cells holds the potential to ra...Cardiac tissue engineering aims to efficiently replace or repair injured heart tissue using scaffolds,relevant cells,or their combination.While the combination of scaffolds and relevant cells holds the potential to rapidly remuscularize the heart,thereby avoiding the slow process of cell recruitment,the proper ex vivo cellularization of a scaffold poses a substantial challenge.First,proper diffusion of nutrients and oxygen should be provided to the cell-seeded scaffold.Second,to generate a functional tissue construct,cells can benefit from physiological-like conditions.To meet these challenges,we developed a modular bioreactor for the dynamic cellularization of full-thickness cardiac scaffolds under synchronized mechanical and electrical stimuli.In this unique bioreactor system,we designed a cyclic mechanical load that mimics the left ventricle volume inflation,thus achieving a steady stimulus,as well as an electrical stimulus with an action potential profile to mirror the cells’microenvironment and electrical stimuli in the heart.These mechanical and electrical stimuli were synchronized according to cardiac physiology and regulated by constant feedback.When applied to a seeded thick porcine cardiac extracellular matrix(pcECM)scaffold,these stimuli improved the proliferation of mesenchymal stem/stromal cells(MSCs)and induced the formation of a dense tissue-like structure near the scaffold’s surface.Most importantly,after 35 d of cultivation,the MSCs presented the early cardiac progenitor markers Connexin-43 andα-actinin,which were absent in the control cells.Overall,this research developed a new bioreactor system for cellularizing cardiac scaffolds under cardiac-like conditions,aiming to restore a sustainable dynamic living tissue that can bear the essential cardiac excitation–contraction coupling.展开更多
Hydrophilicity is critical in Nafion membranes during fuel cell operation as insufficient membrane hydration leads to brittle behavior and a drop in proton conductivity.The incorporation of APTS(3-(aminopro pyl)trieth...Hydrophilicity is critical in Nafion membranes during fuel cell operation as insufficient membrane hydration leads to brittle behavior and a drop in proton conductivity.The incorporation of APTS(3-(aminopro pyl)triethoxysilane)into exfoliated graphene oxide(EGO)by covalent functionalization to be used as filler into Nafion membranes allows higher hydrophilicity for these membranes.This is associated with promoting hydroxyl,carbonyl,siloxane,silane,and amine groups within the EGO-APTS matrix.The incorporation of these materials as Fuel Cell MEAs leads to a significant reduction of the ohmic resistance measured at high frequency resistance(HFR)in electrochemical impedance spectroscopy(EIS)experiments and achieves maximum power densities of 1.33 W cm^(-2)at 60℃ at 100%RH(APTS-EGO,0.2 wt%)and1.33 W cm^(-2)at 60℃ at 70%RH(APTS-EGO,0.3 wt%),which represents an improvement of 190%compared to the commercial Nafion 212 when utilizing low humidification conditions(70%).Moreover,the as-synthesized membrane utilizes lower Nafion ionomer mass,which,in conjunction with the excellent cell performance,has the potential to decrease the cost of the membrane from 87 to 80£/W as well as a reduction of fluorinated compounds within the membrane.展开更多
Chemical synthesis is essential in industries such as petrochemicals, fine chemicals, and pharmaceuticals, driving economic and social development. The increasing demand for new molecules and materials calls for novel...Chemical synthesis is essential in industries such as petrochemicals, fine chemicals, and pharmaceuticals, driving economic and social development. The increasing demand for new molecules and materials calls for novel chemical reactions;however, manual experimental screening is time-consuming. Artificial intelligence (AI) offers a promising solution by leveraging large-scale experimental data to model chemical reactions, although challenges such as the lack of standardization and predictability in chemical synthesis hinder AI applications. Additionally, the multi-scale nature of chemical reactions, along with complex multiphase processes, further complicates the task. Recent advances in microchemical systems, particularly continuous flow methods using microreactors, provide precise control over reaction conditions, enhancing reproducibility and enabling high-throughput experimentation. These systems minimize transport-related inconsistencies and facilitate scalable industrial applications. This review systematically explores recent developments in intelligent synthesis based on microchemical systems, focusing on reaction system design, synthesis robots, closed-loop optimization, and high-throughput experimentation, while identifying key areas for future research.展开更多
Single-atom catalysts(SACs),as the rising stars in the field of catalytic science,are leading catalytic technology into an un-precedented new era.However,the synthe-sis of high-performance SACs with well-de-fined acti...Single-atom catalysts(SACs),as the rising stars in the field of catalytic science,are leading catalytic technology into an un-precedented new era.However,the synthe-sis of high-performance SACs with well-de-fined active sites and high loadings under precise control has become a hotly debated topic in scientific research.Metal-organic frameworks(MOFs),with their exceptional properties such as ultrahigh specific surface areas,precisely controllable structural de-signs,and highly flexible functional cus-tomization capabilities,are regarded as one of the ideal matrices for supporting and sta-bilizing SACs.This review provides an in-sightful overview of the diverse preparation strategies for MOFs-derived SACs.It comprehen-sively analyzes the unique advantages and challenges of each method in achieving efficient synthesis of SACs,emphasizing the crucial role of optimized processes in unlocking the antici-pated performance of SACs.Furthermore,this review delves into a series of advanced charac-terization techniques,including aberration-corrected scanning transmission electron mi-croscopy(AC-STEM),electron energy loss spectroscopy(EELS),X-ray absorption spec-troscopy(XAS),and infrared absorption spectroscopy(IRAS),offering valuable insights into the atomic-scale fine structures and properties of SACs,significantly advancing the under-standing of SAC mechanisms.Moreover,this review focuses on exploring the potential appli-cations of MOFs-derived SACs in electrocatalysis frontier fields.This comprehensive exami-nation lays a solid theoretical foundation and provides a directional guidance for the rational design and controllable synthesis of high-performance MOFs-derived SACs.展开更多
Various novel conjugated polymers(CPs)have been developed for organic photodetectors(OPDs),but their application to practical image sensors such as X-ray,R/G/B,and fingerprint sensors is rare.In this article,we report...Various novel conjugated polymers(CPs)have been developed for organic photodetectors(OPDs),but their application to practical image sensors such as X-ray,R/G/B,and fingerprint sensors is rare.In this article,we report the entire process from the synthesis and molecular engineering of novel CPs to the development of OPDs and fingerprint image sensors.We synthesized six benzo[1,2-d:4,5-d’]bis(oxazole)(BBO)-based CPs by modifying the alkyl side chains of the CPs.Several relationships between the molecular structure and the OPD performance were revealed,and increasing the number of linear octyl side chains on the conjugated backbone was the best way to improve Jph and reduce Jd in the OPDs.The optimized CP demonstrated promising OPD performance with a responsivity(R)of 0.22 A/W,specific detectivity(D^(*))of 1.05×10^(13)Jones at a bias of-1 V,rising/falling response time of 2.9/6.9μs,and cut-off frequency(f_(-3dB))of 134 kHz under collimated 530 nm LED irradiation.Finally,a fingerprint image sensor was fabricated by stacking the POTB1-based OPD layer on the organic thin-film transistors(318 ppi).The image contrast caused by the valleys and ridges in the fingerprints was obtained as a digital signal.展开更多
Plant cell wall(CW)-like soft materials,referred to as artificial CWs,are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition,structure,and mec...Plant cell wall(CW)-like soft materials,referred to as artificial CWs,are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition,structure,and mechanics of plant CWs.CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure–property relationships of native plant CWs or to fabricate functional materials.Here,research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides,including cellulose,pectin,and hemicellulose,as well as organic polymers like lignin.Micro-and nanofabrication of plant CW-like composites,characterization techniques,and in silico studies are reviewed,with a brief overview of current and potential applications.Micro-/nanofabrication approaches include bacterial growth and impregnation,layer-by-layer assembly,film casting,3-dimensional templating microcapsules,and particle coating.Various characterization techniques are necessary for the comprehensive mechanical,chemical,morphological,and structural analyses of plant CWs and CW-like materials.CW-like materials demonstrate versatility in real-life applications,including biomass conversion,pulp and paper,food science,construction,catalysis,and reaction engineering.This review seeks to facilitate the rational design and thorough characterization of plant CW-mimetic materials,with the goal of advancing the development of innovative soft materials and elucidating the complex structure–property relationships inherent in native CWs.展开更多
This study investigates the electrochemical behavior of molybdenum disulfide(MoS_(2))as an anode in Li-ion batteries,focusing on the extra capacity phenomenon.Employing advanced characterization methods such as in sit...This study investigates the electrochemical behavior of molybdenum disulfide(MoS_(2))as an anode in Li-ion batteries,focusing on the extra capacity phenomenon.Employing advanced characterization methods such as in situ and ex situ X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,and transmission electron microscopy,the research unravels the complex structural and chemical evolution of MoS_(2) throughout its cycling.A key discovery is the identification of a unique Li intercalation mechanism in MoS_(2),leading to the formation of reversible Li_(2)MoS_(2) phases that contribute to the extra capacity of the MoS_(2) electrode.Density function theory calculations suggest the potential for overlithiation in MoS_(2),predicting Li5MoS_(2) as the most energetically favorable phase within the lithiation–delithiation process.Additionally,the formation of a Li-rich phase on the surface of Li_(4)MoS_(2) is considered energetically advantageous.After the first discharge,the battery system engages in two main reactions.One involves operation as a Li-sulfur battery within the carbonate electrolyte,and the other is the reversible intercalation and deintercalation of Li in Li_(2)MoS_(2).The latter reaction contributes to the extra capacity of the battery.The incorporation of reduced graphene oxide as a conductive additive in MoS_(2) electrodes notably improves their rate capability and cycling stability.展开更多
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi...Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.展开更多
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un...Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process.展开更多
Rechargeable lithium-ion batteries(LIBs)afford a profound impact on our modern daily life.However,LIBs are approaching the theoretical energy density,due to the inherent limitations of intercalation chemistry;thus,the...Rechargeable lithium-ion batteries(LIBs)afford a profound impact on our modern daily life.However,LIBs are approaching the theoretical energy density,due to the inherent limitations of intercalation chemistry;thus,they cannot further satisfy the increasing demands of portable electronics,electric vehicles,and grids.Therefore,battery chemistries beyond LIBs are being widely investigated.Next-generation lithium(Li)batteries,which employ Li metal as the anode and intercalation or conversion materials as the cathode,receive the most intensive interest due to their high energy density and excellent potential for commercialization.Moreover,significant progress has been achieved in Li batteries attributed to the increasing fundamental understanding of the materials and reactions,as well as to technological improvement.This review starts by summarizing the electrolytes for next-generation Li batteries.Key challenges and recent progress in lithium-ion,lithium–sulfur,and lithium–oxygen batteries are then reviewed from the perspective of energy and chemical engineering science.Finally,possible directions for further development in Li batteries are presented.Next-generation Li batteries are expected to promote the sustainable development of human civilization.展开更多
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(...Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.展开更多
Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on...Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries.展开更多
Over the years, pineapple production in the Republic of Guinea has become less competitive in the West African sub-region, with a world ranking of 144th. It is therefore only natural to review certain parameters in or...Over the years, pineapple production in the Republic of Guinea has become less competitive in the West African sub-region, with a world ranking of 144th. It is therefore only natural to review certain parameters in order to improve this ranking. To do this, certain physico-chemical parameters of soil samples from Friguiagbé and Maferinyah (in the Kindia and Forécariah prefectures) were taken and analysed using the following techniques: Pipette de Robinson, Anne, Bray II, Kapen HICDVITZ, Mc. Lead (1982). The analytical results show that the soils at Friguiagbé in Kindia and Maferinyah in Forécariah are acidic, with pH values of 4.4 and 4.7 (fields I and II) and 4.8 and 4.7 (fields I and II) respectively. The soils have a silty-sandy texture. This study could therefore serve as a guide for the Ministry of Agriculture of the Republic of Guinea.展开更多
Herein, we attempted to engineer oxygen vacancies on the surface of LaCoO_(3) perovskite through simple post-treatments(acid or reductive thermal treatments). Acid treatment induces oxygen vacancies through the select...Herein, we attempted to engineer oxygen vacancies on the surface of LaCoO_(3) perovskite through simple post-treatments(acid or reductive thermal treatments). Acid treatment induces oxygen vacancies through the selective etching of the La cations, whereas thermal treatment in a reducing atmosphere generates oxygen vacancies by directly removing lattice oxygen. The characterization results confirm that the number of surface oxygen vacancies, which are crucial in various catalytic oxidation reactions,considerably increases in the LaCoO_(3) catalysts treated with acid or reducing gas. Acid treatment enriches the oxygen vacancies while maintaining the structure of the LaCoO_(3) catalysts, which can not be achieved through reductive thermal treatment. Therefore, the acid treatment is considered a promising technique for oxygen vacancy engineering of perovskite catalysts for tuning their catalytic activities. Furthermore,the catalytic activities of the posttreated LaCoO_(3) catalysts for CO oxidation were evaluated and are noted to be considerably better than those of the pristine LaCoO_(3) catalyst due to their abundant oxygen vacancies. Consequently, we conclude that the oxygen vacancies of perovskite catalysts can be effectively engineered via two simple methods and play a significant role in CO oxidation.展开更多
The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emiss...The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.展开更多
Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to di...Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry.In this article,we compare coin cells and pouch cells of different size with exactly the same electrode materials,electrolyte,and electrochemical conditions.We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy(EIS)and Galvanostatic Intermittent Titration Technique(GITT).Using full cell NCA-graphite LIBs,we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode.We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.展开更多
Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly aff...Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly affect the photophysical properties of QDs,the influence on photoelectrochemical hydrogen production is not well understood.Herein,we present the defect engineering of CISe QDs for efficient solar-energy conversion.Lewis acid–base reactions between metal halide–oleylamine complexes and oleylammonium selenocarbamate are modulated to achieve CISe QDs with the controlled amount of Cu vacancies without changing their morphology.Among them,CISe QDs with In/Cu=1.55 show the most outstanding photoelectrochemical hydrogen generation with excellent photocurrent density of up to 10.7 mA cm-2(at 0.6 VRHE),attributed to the suitable electronic band structures and enhanced carrier concentrations/lifetimes of the QDs.The proposed method,which can effectively control the defects in heavy-metal-free ternary QDs,offers a deeper understanding of the effects of the defects and provides a practical approach to enhance photoelectrochemical hydrogen generation.展开更多
An organic geochemical,petrographical,and palynological evaluation was conducted on 30 claystone outcrop samples of the Toraja Formation,along with a geochemical analysis of an oil seep in the Enrekang Sub-basin.The a...An organic geochemical,petrographical,and palynological evaluation was conducted on 30 claystone outcrop samples of the Toraja Formation,along with a geochemical analysis of an oil seep in the Enrekang Sub-basin.The aim of the study was to determine the correlation between oil and source rock in terms of age,depositional environment,organic material sources,and maturity level.The total organic carbon content of the claystone samples varies from 0.03 to 4.52 wt%,which are classified as poor to excellent.The claystones are immature to post-mature with a mixture of TypeⅡandⅢkerogen.Their vitrinite reflectance values range from 0.47 to 4.52%Ro.The samples of Toraja Formation rock and the oil seep source rock might have a similar depositional environment,a deltaic marine depositional setting with high oxidizing conditions.Organic material sources for rock and oil samples are dominated by terrestrial input.The oil is inferred to have originated from the Paleogene source rocks,which correlates in age with the Toraja Formation.The recovered palynomorphs from the studied rock samples suggest a late Eocene to Oligocene age with a strong terrestrial influence of shallow marine depositional setting.The biomarker analysis shows that the rock samples have a more substantial contribution from the terrigenous higher plants,while the oil sample indicates a higher degree of marine influence.The maturity levels are also different between the oil(peak mature)and the analyzed rock samples(immature).It is inferred that the oil seep source rock is equivalent to the analyzed rock sample but more mature,having been deposited under more marine conditions.The oil seep source rock is not exposed and is located in the deeper part of the basin.A deeper marine facies(i.e.distal delta front and prodelta facies)in front of the distributary mouth bar within a delta is interpreted as the source rock of the oil seep sample.展开更多
Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure m...Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure methods simultaneously under constant conditions.Experimental results using thermogravimetric analysis show that biocoke empty-fruit-bunches(EFB)have a higher energy potential of 26.57 MJ/kg.Meanwhile,mangrove biocoke recorded the lowest ash content at 1.81%compared to EFB at 5.09%.The carbon content of mangrove biocoke is 58.02%,slightly higher than that of EFB,56.70%,but EFB is higher than that of other biomass.Overall,the energy content recorded in biocoke increased significantly compared to raw biomass.展开更多
基金financially supported by National Key R&D Program International Cooperation Project(2023YFE0108100)Natural Science Foundation of China(No.52170085)+2 种基金Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)Tianjin Post-graduate Students Research and Innovation Project(2021YJSB013)Fundamental Research Funds for the Central Universities,Nankai University.
文摘Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.
基金funded by the Israeli Ministry of Innovation,Science and Technology(Grant No.3-11873)the Israel Science Foundation(Grant No.1563/10)+1 种基金the Randy L.and Melvin R.Berlin Family Research Center for Regenerative Medicinethe Gurwin Family Foundation.
文摘Cardiac tissue engineering aims to efficiently replace or repair injured heart tissue using scaffolds,relevant cells,or their combination.While the combination of scaffolds and relevant cells holds the potential to rapidly remuscularize the heart,thereby avoiding the slow process of cell recruitment,the proper ex vivo cellularization of a scaffold poses a substantial challenge.First,proper diffusion of nutrients and oxygen should be provided to the cell-seeded scaffold.Second,to generate a functional tissue construct,cells can benefit from physiological-like conditions.To meet these challenges,we developed a modular bioreactor for the dynamic cellularization of full-thickness cardiac scaffolds under synchronized mechanical and electrical stimuli.In this unique bioreactor system,we designed a cyclic mechanical load that mimics the left ventricle volume inflation,thus achieving a steady stimulus,as well as an electrical stimulus with an action potential profile to mirror the cells’microenvironment and electrical stimuli in the heart.These mechanical and electrical stimuli were synchronized according to cardiac physiology and regulated by constant feedback.When applied to a seeded thick porcine cardiac extracellular matrix(pcECM)scaffold,these stimuli improved the proliferation of mesenchymal stem/stromal cells(MSCs)and induced the formation of a dense tissue-like structure near the scaffold’s surface.Most importantly,after 35 d of cultivation,the MSCs presented the early cardiac progenitor markers Connexin-43 andα-actinin,which were absent in the control cells.Overall,this research developed a new bioreactor system for cellularizing cardiac scaffolds under cardiac-like conditions,aiming to restore a sustainable dynamic living tissue that can bear the essential cardiac excitation–contraction coupling.
基金financially supported by the UK Research Council EPRSC EP/W03395X/1the Program grant SynHiSel EP/V047078/1the Hydrogen and Fuel Cells Hub(H_(2)FC SUPERGEN)EP/P024807/1。
文摘Hydrophilicity is critical in Nafion membranes during fuel cell operation as insufficient membrane hydration leads to brittle behavior and a drop in proton conductivity.The incorporation of APTS(3-(aminopro pyl)triethoxysilane)into exfoliated graphene oxide(EGO)by covalent functionalization to be used as filler into Nafion membranes allows higher hydrophilicity for these membranes.This is associated with promoting hydroxyl,carbonyl,siloxane,silane,and amine groups within the EGO-APTS matrix.The incorporation of these materials as Fuel Cell MEAs leads to a significant reduction of the ohmic resistance measured at high frequency resistance(HFR)in electrochemical impedance spectroscopy(EIS)experiments and achieves maximum power densities of 1.33 W cm^(-2)at 60℃ at 100%RH(APTS-EGO,0.2 wt%)and1.33 W cm^(-2)at 60℃ at 70%RH(APTS-EGO,0.3 wt%),which represents an improvement of 190%compared to the commercial Nafion 212 when utilizing low humidification conditions(70%).Moreover,the as-synthesized membrane utilizes lower Nafion ionomer mass,which,in conjunction with the excellent cell performance,has the potential to decrease the cost of the membrane from 87 to 80£/W as well as a reduction of fluorinated compounds within the membrane.
基金supported by the National Natural Science Foundation of China(22378227)Shijiazhuang Science and Technology Bureau(231790163A).
文摘Chemical synthesis is essential in industries such as petrochemicals, fine chemicals, and pharmaceuticals, driving economic and social development. The increasing demand for new molecules and materials calls for novel chemical reactions;however, manual experimental screening is time-consuming. Artificial intelligence (AI) offers a promising solution by leveraging large-scale experimental data to model chemical reactions, although challenges such as the lack of standardization and predictability in chemical synthesis hinder AI applications. Additionally, the multi-scale nature of chemical reactions, along with complex multiphase processes, further complicates the task. Recent advances in microchemical systems, particularly continuous flow methods using microreactors, provide precise control over reaction conditions, enhancing reproducibility and enabling high-throughput experimentation. These systems minimize transport-related inconsistencies and facilitate scalable industrial applications. This review systematically explores recent developments in intelligent synthesis based on microchemical systems, focusing on reaction system design, synthesis robots, closed-loop optimization, and high-throughput experimentation, while identifying key areas for future research.
基金supported by Henan Province Key Research and Development and Promotion of Science and Technology Project(No.25A150001)the National Natural Science Foundation of China(Nos.22409171,22125303,92361302,and 92061203).
文摘Single-atom catalysts(SACs),as the rising stars in the field of catalytic science,are leading catalytic technology into an un-precedented new era.However,the synthe-sis of high-performance SACs with well-de-fined active sites and high loadings under precise control has become a hotly debated topic in scientific research.Metal-organic frameworks(MOFs),with their exceptional properties such as ultrahigh specific surface areas,precisely controllable structural de-signs,and highly flexible functional cus-tomization capabilities,are regarded as one of the ideal matrices for supporting and sta-bilizing SACs.This review provides an in-sightful overview of the diverse preparation strategies for MOFs-derived SACs.It comprehen-sively analyzes the unique advantages and challenges of each method in achieving efficient synthesis of SACs,emphasizing the crucial role of optimized processes in unlocking the antici-pated performance of SACs.Furthermore,this review delves into a series of advanced charac-terization techniques,including aberration-corrected scanning transmission electron mi-croscopy(AC-STEM),electron energy loss spectroscopy(EELS),X-ray absorption spec-troscopy(XAS),and infrared absorption spectroscopy(IRAS),offering valuable insights into the atomic-scale fine structures and properties of SACs,significantly advancing the under-standing of SAC mechanisms.Moreover,this review focuses on exploring the potential appli-cations of MOFs-derived SACs in electrocatalysis frontier fields.This comprehensive exami-nation lays a solid theoretical foundation and provides a directional guidance for the rational design and controllable synthesis of high-performance MOFs-derived SACs.
基金funded by the National Research Foundation(NRF)of Korea(2020M3H4A3081816,RS-2023-00304936,and RS-2024-00398065).
文摘Various novel conjugated polymers(CPs)have been developed for organic photodetectors(OPDs),but their application to practical image sensors such as X-ray,R/G/B,and fingerprint sensors is rare.In this article,we report the entire process from the synthesis and molecular engineering of novel CPs to the development of OPDs and fingerprint image sensors.We synthesized six benzo[1,2-d:4,5-d’]bis(oxazole)(BBO)-based CPs by modifying the alkyl side chains of the CPs.Several relationships between the molecular structure and the OPD performance were revealed,and increasing the number of linear octyl side chains on the conjugated backbone was the best way to improve Jph and reduce Jd in the OPDs.The optimized CP demonstrated promising OPD performance with a responsivity(R)of 0.22 A/W,specific detectivity(D^(*))of 1.05×10^(13)Jones at a bias of-1 V,rising/falling response time of 2.9/6.9μs,and cut-off frequency(f_(-3dB))of 134 kHz under collimated 530 nm LED irradiation.Finally,a fingerprint image sensor was fabricated by stacking the POTB1-based OPD layer on the organic thin-film transistors(318 ppi).The image contrast caused by the valleys and ridges in the fingerprints was obtained as a digital signal.
基金supported as part of The Center for LignoCellulose Structure and Formation,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award#DE-SC0001090support from the Huck Institutes of the Life Sciences at Penn State University through the Patricia and Stephen Benkovic Research Initiativesupported by the Center for Engineering Mechano Biology(CEMB),an NSF Science and Technology Center,under grant agreement CMMI:15-48571。
文摘Plant cell wall(CW)-like soft materials,referred to as artificial CWs,are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition,structure,and mechanics of plant CWs.CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure–property relationships of native plant CWs or to fabricate functional materials.Here,research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides,including cellulose,pectin,and hemicellulose,as well as organic polymers like lignin.Micro-and nanofabrication of plant CW-like composites,characterization techniques,and in silico studies are reviewed,with a brief overview of current and potential applications.Micro-/nanofabrication approaches include bacterial growth and impregnation,layer-by-layer assembly,film casting,3-dimensional templating microcapsules,and particle coating.Various characterization techniques are necessary for the comprehensive mechanical,chemical,morphological,and structural analyses of plant CWs and CW-like materials.CW-like materials demonstrate versatility in real-life applications,including biomass conversion,pulp and paper,food science,construction,catalysis,and reaction engineering.This review seeks to facilitate the rational design and thorough characterization of plant CW-mimetic materials,with the goal of advancing the development of innovative soft materials and elucidating the complex structure–property relationships inherent in native CWs.
基金the financial support from the Science, Technology, and Innovation Funding Authority (STIFA, STDF previously) through project number 42691 entitled “Microstructure-Based, Multi-Physics Simulation and Optimization to Improve Battery Performance”supported by the U.S. DOE (Department of Energy), Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357supported by the U.S. DOE Vehicle Technologies office, under contract number DE-AC02-06CH11357
文摘This study investigates the electrochemical behavior of molybdenum disulfide(MoS_(2))as an anode in Li-ion batteries,focusing on the extra capacity phenomenon.Employing advanced characterization methods such as in situ and ex situ X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,and transmission electron microscopy,the research unravels the complex structural and chemical evolution of MoS_(2) throughout its cycling.A key discovery is the identification of a unique Li intercalation mechanism in MoS_(2),leading to the formation of reversible Li_(2)MoS_(2) phases that contribute to the extra capacity of the MoS_(2) electrode.Density function theory calculations suggest the potential for overlithiation in MoS_(2),predicting Li5MoS_(2) as the most energetically favorable phase within the lithiation–delithiation process.Additionally,the formation of a Li-rich phase on the surface of Li_(4)MoS_(2) is considered energetically advantageous.After the first discharge,the battery system engages in two main reactions.One involves operation as a Li-sulfur battery within the carbonate electrolyte,and the other is the reversible intercalation and deintercalation of Li in Li_(2)MoS_(2).The latter reaction contributes to the extra capacity of the battery.The incorporation of reduced graphene oxide as a conductive additive in MoS_(2) electrodes notably improves their rate capability and cycling stability.
基金supported by National Natural Science Foundation of China(Grant No.U1930113),ChinaNational Natural Science Foundation of China(52072036)
文摘Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.
文摘Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process.
基金the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the National Natural Science Foundation of China(21676160,21776019,and 21825501)the Tsinghua University Initiative Scientific Research Program.
文摘Rechargeable lithium-ion batteries(LIBs)afford a profound impact on our modern daily life.However,LIBs are approaching the theoretical energy density,due to the inherent limitations of intercalation chemistry;thus,they cannot further satisfy the increasing demands of portable electronics,electric vehicles,and grids.Therefore,battery chemistries beyond LIBs are being widely investigated.Next-generation lithium(Li)batteries,which employ Li metal as the anode and intercalation or conversion materials as the cathode,receive the most intensive interest due to their high energy density and excellent potential for commercialization.Moreover,significant progress has been achieved in Li batteries attributed to the increasing fundamental understanding of the materials and reactions,as well as to technological improvement.This review starts by summarizing the electrolytes for next-generation Li batteries.Key challenges and recent progress in lithium-ion,lithium–sulfur,and lithium–oxygen batteries are then reviewed from the perspective of energy and chemical engineering science.Finally,possible directions for further development in Li batteries are presented.Next-generation Li batteries are expected to promote the sustainable development of human civilization.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(No.22178197)。
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.
基金supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017012, Human Resource Development Program for Industrial Innovation)the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS2024-00411892)。
文摘Anode materials for rechargeable electric car batteries are obtained from Li-metal owing to their extremely high specific capacity and low redox potential.Unfortunately,safety concerns related to dendrite formation on the anode surface caused by the uneven distribution of Li-ions during the discharge process interfere with the use of Li-metal in industrial batteries.In this study,methyl vinyl sulfone(MVS),a sulfone-based functional electrolyte additive,is used in an additive engineering strategy to control Lielectrolyte interactions and address the aforementioned problems.Li dendrite growth may be restricted,and transition metal degradation on the surface of the cathode can be reduced by the MVS-derived functional electrolyte additive interfacial layer.The electrochemical performance of an ethylene carbonate/dimethyl carbonate(EC/DMC)+1 wt% MVS Li-metal anode of a Li||Li symmetric cell exhibits remarkable cycle stability,maintaining a low overvoltage for over 750 h at 1 mA cm^(-2),and capacity of 1 mA h cm^(-2).Additionally,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) full cells with the MVS additive exhibit enhanced electrochemical stability for 250 cycles at a current density of 100 mA g^(-1).This study provides an innovative approach for stabilizing the metal-electrolyte interfacial layer that may be used for practical applications in metal-based rechargeable batteries.
文摘Over the years, pineapple production in the Republic of Guinea has become less competitive in the West African sub-region, with a world ranking of 144th. It is therefore only natural to review certain parameters in order to improve this ranking. To do this, certain physico-chemical parameters of soil samples from Friguiagbé and Maferinyah (in the Kindia and Forécariah prefectures) were taken and analysed using the following techniques: Pipette de Robinson, Anne, Bray II, Kapen HICDVITZ, Mc. Lead (1982). The analytical results show that the soils at Friguiagbé in Kindia and Maferinyah in Forécariah are acidic, with pH values of 4.4 and 4.7 (fields I and II) and 4.8 and 4.7 (fields I and II) respectively. The soils have a silty-sandy texture. This study could therefore serve as a guide for the Ministry of Agriculture of the Republic of Guinea.
基金Project supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE),Republic of Korea(No.20214810100010)。
文摘Herein, we attempted to engineer oxygen vacancies on the surface of LaCoO_(3) perovskite through simple post-treatments(acid or reductive thermal treatments). Acid treatment induces oxygen vacancies through the selective etching of the La cations, whereas thermal treatment in a reducing atmosphere generates oxygen vacancies by directly removing lattice oxygen. The characterization results confirm that the number of surface oxygen vacancies, which are crucial in various catalytic oxidation reactions,considerably increases in the LaCoO_(3) catalysts treated with acid or reducing gas. Acid treatment enriches the oxygen vacancies while maintaining the structure of the LaCoO_(3) catalysts, which can not be achieved through reductive thermal treatment. Therefore, the acid treatment is considered a promising technique for oxygen vacancy engineering of perovskite catalysts for tuning their catalytic activities. Furthermore,the catalytic activities of the posttreated LaCoO_(3) catalysts for CO oxidation were evaluated and are noted to be considerably better than those of the pristine LaCoO_(3) catalyst due to their abundant oxygen vacancies. Consequently, we conclude that the oxygen vacancies of perovskite catalysts can be effectively engineered via two simple methods and play a significant role in CO oxidation.
基金the supports of the National Science Foundation of China (22008130, 22025801)the China Postdoctoral Science Foundation (2020M682124)+1 种基金the Qingdao Postdoctoral Researchers Applied Research Project Foundation (RZ2000001426)the Scientific Research Foundation for Youth Scholars from Qingdao University (DC1900014265) for this work
文摘The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.
基金funding from the ERC(Consolidator Grant MIGHTY,866005)the Innovate UK(UKRI:104174)Faraday Institution-Future CAT(FIRG017)and Degradation(FIRG001)
文摘Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry.In this article,we compare coin cells and pouch cells of different size with exactly the same electrode materials,electrolyte,and electrochemical conditions.We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy(EIS)and Galvanostatic Intermittent Titration Technique(GITT).Using full cell NCA-graphite LIBs,we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode.We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(grant nos.2021R1C1C1007844,2021M3I3A1085039,2020R1F1A1061505,and 2020R1C1C1012014).
文摘Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly affect the photophysical properties of QDs,the influence on photoelectrochemical hydrogen production is not well understood.Herein,we present the defect engineering of CISe QDs for efficient solar-energy conversion.Lewis acid–base reactions between metal halide–oleylamine complexes and oleylammonium selenocarbamate are modulated to achieve CISe QDs with the controlled amount of Cu vacancies without changing their morphology.Among them,CISe QDs with In/Cu=1.55 show the most outstanding photoelectrochemical hydrogen generation with excellent photocurrent density of up to 10.7 mA cm-2(at 0.6 VRHE),attributed to the suitable electronic band structures and enhanced carrier concentrations/lifetimes of the QDs.The proposed method,which can effectively control the defects in heavy-metal-free ternary QDs,offers a deeper understanding of the effects of the defects and provides a practical approach to enhance photoelectrochemical hydrogen generation.
基金provided by Universitas Muslim Indonesia tothe first author(AAB).
文摘An organic geochemical,petrographical,and palynological evaluation was conducted on 30 claystone outcrop samples of the Toraja Formation,along with a geochemical analysis of an oil seep in the Enrekang Sub-basin.The aim of the study was to determine the correlation between oil and source rock in terms of age,depositional environment,organic material sources,and maturity level.The total organic carbon content of the claystone samples varies from 0.03 to 4.52 wt%,which are classified as poor to excellent.The claystones are immature to post-mature with a mixture of TypeⅡandⅢkerogen.Their vitrinite reflectance values range from 0.47 to 4.52%Ro.The samples of Toraja Formation rock and the oil seep source rock might have a similar depositional environment,a deltaic marine depositional setting with high oxidizing conditions.Organic material sources for rock and oil samples are dominated by terrestrial input.The oil is inferred to have originated from the Paleogene source rocks,which correlates in age with the Toraja Formation.The recovered palynomorphs from the studied rock samples suggest a late Eocene to Oligocene age with a strong terrestrial influence of shallow marine depositional setting.The biomarker analysis shows that the rock samples have a more substantial contribution from the terrigenous higher plants,while the oil sample indicates a higher degree of marine influence.The maturity levels are also different between the oil(peak mature)and the analyzed rock samples(immature).It is inferred that the oil seep source rock is equivalent to the analyzed rock sample but more mature,having been deposited under more marine conditions.The oil seep source rock is not exposed and is located in the deeper part of the basin.A deeper marine facies(i.e.distal delta front and prodelta facies)in front of the distributary mouth bar within a delta is interpreted as the source rock of the oil seep sample.
基金support in the form of a research grant by Badan Pengelola Dana Perkebunan Kelapa Sawit(BPDPKS)with grant number(PRJ-374/DPKS/2022,PRJ-17/DPKS/2023Lembaga Penelitian dan Pengabdian Masyarakat(LPPM-USK)with grand number 192/UN11.2.1/PT.01.03/PNBP/2023).
文摘Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure methods simultaneously under constant conditions.Experimental results using thermogravimetric analysis show that biocoke empty-fruit-bunches(EFB)have a higher energy potential of 26.57 MJ/kg.Meanwhile,mangrove biocoke recorded the lowest ash content at 1.81%compared to EFB at 5.09%.The carbon content of mangrove biocoke is 58.02%,slightly higher than that of EFB,56.70%,but EFB is higher than that of other biomass.Overall,the energy content recorded in biocoke increased significantly compared to raw biomass.