The development of catalytic materials for the recycling CO_(2) through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this ...The development of catalytic materials for the recycling CO_(2) through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this field,the reported catalysts rarely deviate from the traditionally supported metal nanoparticle morphology,with the most simplistic method of enhancement being the addition of more metals to an already complex composition.Encapsulated catalysts,especially yolk@shell catalysts with hollow voids,offer answers to the most prominent issues faced by this field,coking and sintering,and further potential for more advanced phenomena,for example,the confinement effect,to promote selectivity or offer greater protection against coking and sintering.This work serves to demonstrate the current position of catalyst development in the fields of thermal CO_(2) reforming and hydrogenation,summarizing the most recent work available and most common metals used for these reactions,and how yolk@shell catalysts can offer superior performance and survivability in thermal CO_(2) reforming and hydrogenation to the more traditional structure.Furthermore,this work will briefly demonstrate the bespoke nature and highly variable yolk@shell structure.Moreover,this review aims to illuminate the spatial confinement effect and how it enhances yolk@shell structured nanoreactors is presented.展开更多
In this study, shea residues (<em>Vitellaria paradoxa</em>) dumped in the wild by the units processing almonds into butter were used in the production of activated carbons. Shea nut shells harvested in the...In this study, shea residues (<em>Vitellaria paradoxa</em>) dumped in the wild by the units processing almonds into butter were used in the production of activated carbons. Shea nut shells harvested in the locality of Baktchoro, West Tandjile Division of Chad were used as a precursor for the preparation of activated carbons by chemical activation with phosphoric acid (H<sub>3</sub>PO<sub>4</sub>) and sulphuric acid (H<sub>2</sub>SO<sub>4</sub>). Central Composite Design (CCD) was used to optimize the preparation conditions, and the factors used were concentration of activating agent (1 - 5 M), carbonization temperature (400<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C - 700<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C) and residence time (30 - 120 min). The studies showed that at optimal conditions the yield was 51.45% and 42.35%, while the iodine number (IN) was 709.45 and 817.36 mg/g for CAK-P (phosphoric acid activated carbon) and CAK-S (sulphuric acid activated carbon) respectively. These two activated carbons (ACs) which were distinguished by their considerable iodine number, were variously characterized by elementary analysis, pH at the point of zero charge (pHpzc), bulk density, moisture content, Boehm titration, Fourier transform infrared spectroscopy, BET adsorption and scanning electron microscopy. These analyses revealed the acidic and microporous nature of CAK-P and CAK-S carbons, which have a specific microporous surface area of 522.55 and 570.65 m<sup>2</sup>·g<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup> respectively.展开更多
By the virtue of their olfactory,physicochemical,and biological characteristics,essential oils(EOs)have drawn wide attention as additives in daily chemicals like perfume or personal care products.Nevertheless,they are...By the virtue of their olfactory,physicochemical,and biological characteristics,essential oils(EOs)have drawn wide attention as additives in daily chemicals like perfume or personal care products.Nevertheless,they are physicochemically unstable and susceptible to degradation or loss.Microencapsulation offers a feasible strategy to stabilize and prolong release of EO.This review summarizes the recognized benefits and functional properties of various preparation and characterization methods,wherein innovative fabrication strategies and their formation mechanisms are especially emphasized.Progress in combining detecting/measuring technologies with kinetic modelling are discussed,to give an integral approach of controlling the dynamic release of encapsulated EOs.Moreover,new development trends of EOs capsules are also highlighted.展开更多
The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process scre...The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process screening different pH environments.These Ni/Y_(2)O_(3)catalysts were applied to efficiently produce CO_(x)-free H2through ammonia decomposition.We identify a significant impact of Y_(2)O_(3)supports on nickel nanoclusters sizes and dispersion.The experimental results show that Ni/Y11 catalyst achieves 100% ammonia decomposition conversion under a gas hour space velocity(GHSV) of 12,000 ml·h^(-1)·gcat^(-1) and temperature of 650℃.Such a high level of activity over Ni/Y11 catalyst was attributed to a large specific surface area,appropriate alkalinity,and small Ni nanoparticles diameter with high dispersion.展开更多
Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic ...Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide(SGO) was used as a high-efficiency adsorbent to remove Congo red(CR) and Cadmium(Ⅱ) from aqueous solutions. The effects of solution initial concentration(20 to 120 mg/l), solution pH(pH 2 to 7), adsorption duration(0 to 140 min) and temperature(298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd(Ⅱ) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Q max for CR and Cd(Ⅱ) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd(II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy( H) and Gibbs free energy( G) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO( π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd(Ⅱ) from an aqueous solu-tion, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.展开更多
This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternati...This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternatives for liquid fuel and aviation industry is first discussed.Key insights encompass the evolutionary progression of biofuel production from first-generation to second-generation biofuels,with a focus on utilizing non-food sources like woody biomass for enhanced sustainability.Available data from the literature on techno-economic assessments of various SAF production pathways are analyzed including production costs,conversion efficiency,and scalability.Moreover,results of lifecycle assessments associated with different SAF production pathways are presented,providing essential insights for decision-making processes.The challenges of scaling up woody biomass-based SAF production are discussed based on the assessment results,and recommendations are proposed to steer stakeholders towards a greener and more sustainable trajectory for aviation operations.展开更多
The Intergovernmental Panel on Climate Change(IPCC)recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target.The implementation of renewables should ...The Intergovernmental Panel on Climate Change(IPCC)recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target.The implementation of renewables should provide major opportunities and enable a more secure and decentralised energy supply system.Renewable fuels provide long-term solutions for the transport sector,particularly for applications where fuels with high energy density are required.In addition,it helps reducing the carbon footprint of these sectors in the long-term.Information on biomass characteristics feedstock is essential for scaling-up gasification from the laboratory to industrial-scale.This review deals with the transformation biogenic residues into a valuable bioenergy carrier like biomethanol as the liquid sunshine based on the combination of modified mature technologies such as gasification with other innovative solutions such as membranes and microchannel reactors.Tar abatement is a critical process in product gas upgrading since tars compromise downstream processes and equipment,for this,membrane technology for upgrading syngas quality is discussed in this paper.Microchannel reactor technology with the design of state-of-the-art multifunctional catalysts provides a path to develop decentralised biomethanol synthesis from biogenic residues.Finally,the development of a process chain for the production of(i)methanol as an intermediate energy carrier,(ii)electricity and(iii)heat for decentralised applications based on biomass feedstock flexible gasification,gas upgrading and methanol synthesis is analysed.展开更多
As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density com...As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.展开更多
Objective:To evaluate the antibacterial activity of essential oil from Trigonella foenumgraecum seeds powder,and identify the compounds from the extracted oil.Methods:The seeds powder of Trigonella foenum-graecum was ...Objective:To evaluate the antibacterial activity of essential oil from Trigonella foenumgraecum seeds powder,and identify the compounds from the extracted oil.Methods:The seeds powder of Trigonella foenum-graecum was subjected to Clevenger extractor.Seven strains of bacteria were used to test antibacterial activity of the extract.The activity against bacteria was tested by disk diffusion method using Whatman No.1filter paper.Gas chromatography mass spectrometry analysis was performed with an Agilent7890/5975B-gas chromatography/mass selective detector.Results:The hydrodistillation of seeds powder yielded 0.285%(v/w)of oil.Disk diffusion of the oil showed bactericidal activity against both Gram negative and Gram positive bacteria of tasted strains.The inhibition zone ranged from(8±0)mm to(15.0±0.7)mm depending on microbial strains.Gas chromatography mass spectrometry analysis showed14 different compounds.The total compounds represented 80.96%of the oil.Conclusions:The antibacterial activity is due to the effects of different biological active compounds present in the extract.Identification of the compounds may help to develop new effective antimicrobial agent(s).Further researches on purification,characterization and toxicology of the active compounds are needed.展开更多
In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO perfor...In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO performances including water flux and bidirectional transport of succinate and chloride anions were systematically examined using cellulose triacetate-based FO membrane. Additionally, real seawater was explored as draw solution. Experimental results revealed that the pH-dependent speciation of succinic acid can affect the FO performances. Ionization of succinic acid at higher solution pH enhanced the osmotic pressure of feed solution, thus leading to lower water flux performance. A strong effect was pointed out on the succinate rejection for which nearly 100% rejections were achieved at pH above its pKa2 value. The rejection of succinate increased in the following order of chemical form: C2H4C2O4H2 〈 C2H4C2OH- 〈 C2H4C2O24-. With real seawater as the draw solution, low to moderate water fluxes (〈4 L. m- 2. h- 1 ) were observed. The divalent succinate anion was highly retained in the feed side despite differences in the succinic acid feed concentration at pH of approximately 6.90.展开更多
Batch trials were carried out to determine the methane potential yields of some typical organic wastes generated in the region of Cantabria (Spain): cocoa shell, cheese whey and sludges from dairy industry. Anaerobic ...Batch trials were carried out to determine the methane potential yields of some typical organic wastes generated in the region of Cantabria (Spain): cocoa shell, cheese whey and sludges from dairy industry. Anaerobic co-digestion trials of these wastes with dairy manure were also investigated in batch at 35℃. Cheese whey obtained similar methane yields than dairy manure, between 17.5 and 19.3 L CH4kg-1 cheese whey compared with 18.0 L CH4kg-1 manure. Methane yields of various sludge samples collected from wastewater treatment facilities of dairy industries were influenced by its origin. Sludge samples from fat separation devices were the most productive in terms of specific methane yields compared with biological sludge from an aerobic reactor. Sludge samples from fat separator reached specific methane productivities of 350 and 388 L CH4kg-1 VS (10.5 and 24.1 L CH4kg-1 sludge), whereas biological sludge yielded 125 L CH4kg-1 VS (12.6 L CH4kg-1 sludge). The methane potential of sludge samples was influenced by solids content. Cocoa shell resulted to be an interesting waste for anaerobic digestion due to its high VS content, yielding 195 L CH4kg-1 cocoa shell. It is a waste that can considerably improve methane yields in anaerobic co-digestion with dairy manure. However, at proportions of 10% cocoa shell, the process was hindered by hydrolysis of particulate matter. Anaerobic digestion at higher temperatures (thermophilic range) could be a better option for this kind of waste. Co-digestion of 5% cocoa shell with 35% dairy sludge and 60% dairy manure resulted in 80.5% higher methane production compared to anaerobic digestion of dairy manure alone.展开更多
In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study fol...In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study follows on to consider the impact of process parameters (catalyst preparation and reaction conditions), in conjunction with catalyst composition (weight loadings of Au and ZnO, and the total weight of the catalyst), as the optimization of the process parameters simultaneously optimized the catalyst composition. The optimization target is the reactivity of this important reaction. These factors were first optimized using response surface methodology (RSM) with 25 experiments, to obtain the optimum: 100 mg of 1.0%Au-4.1%ZnO/Al2O3 catalyst with 220℃ calcination and 100℃ reduction. After optimization, the main effects and interactions of these five factors were studied using statistical sensitivity analysis (SA). Certain observations from SA were verified by reaction mechanism, reactivity test and/or characterization techniques, while others need further investigation.展开更多
The sonochemical decolorization of Methylene Orange was studied using a 24 kHz Ultrasound device with a 1.4 cm diameter horn. pH, power density, the effects of pH and power density on decolorization were discussed. Th...The sonochemical decolorization of Methylene Orange was studied using a 24 kHz Ultrasound device with a 1.4 cm diameter horn. pH, power density, the effects of pH and power density on decolorization were discussed. The combined effect of radiate time, the initial concentration of dyes and the addition of Fe^2+ on the decolorization was studied using response surface methodology. The results showed that the factorial central composite design was successfully employed for experimental design and predication of the results. AtpH = 2.8, T=30℃, power denstity= 300 W/L and Fe^2+ of 2 mg/L, the decolorization percentage of 5 mg/L dye solution reached 96% after 60 mill ultreatment. The rate of decolorization of the dye was greatly improved in the presence of Fe^2+. The sonolysis of the dye followed first-order kinetics.展开更多
Chemical absorption is a crucial step for several chemical processes such as ammonia production, coal gasification, methane reforming,ethylene oxide manufacturing and treatment of associated gas streams [1]. It is con...Chemical absorption is a crucial step for several chemical processes such as ammonia production, coal gasification, methane reforming,ethylene oxide manufacturing and treatment of associated gas streams [1]. It is considered one of the main processes to eliminate CO_2 emissions from power plants by post-combustion.Use of new solvents are of high interest in chemical absorption for carbon capture. For the design of the absorption and desorption columns it is essential to know the vapour-liquid equilibrium(VLE), heat of absorption and densities. N,N-diethylethanolamine(DEEA) appeared as one of the amines with the lowest amount of energy needed for its regeneration [2], which would directly decrease the operation costs. DEEA has a high CO_2 loading of 1 mol/mol of amine compared to the traditional MEA solvent(0.5 mol/mol amine) and is obtained from renewable sources[1]. The main weakness is its low absorption rate and consequently the use of promoters is desirable.In this work, a thermodynamic model based on the electrolyte non-random two-liquid theory(eNRTL) was created and fitted to correlate and predict the partial and total pressures of the unloaded and loaded aqueous DEEA solutions. New interaction parameters were obtained for the binary and tertiary system. This model represents the vapour pressures of the pure components, DEEA and H_2 O, with AARD of 1.9% and 1.73%respectively. Furthermore, the fitted model predicts the total pressure above the binary system, H_2O-DEEA, with AARD of 0.05%. The excess of enthalpy and densities are predicted with AARD of 5.63% and 1.38% respectively. The tertiary system, H_2O-DEEA-CO_2, is fitted for 2 M and5 M DEEA solutions with loading between 0.042 and 0.9 mol CO_2/mol amine up to 80 ℃. Results of CO_2 partial pressures and total pressures are reproduced, with AARD of 19.45% and 16.18% respectively. Densities are predicted with an AARD of 1.52%.展开更多
In the present study,the effect of injecting air bubble size on the thermal performance of a vertical counter-current shell and coiled tube heat exchanger is experimentally investigated.The experiments were accomplish...In the present study,the effect of injecting air bubble size on the thermal performance of a vertical counter-current shell and coiled tube heat exchanger is experimentally investigated.The experiments were accomplished in a cylindrical shape heat exchanger with a 50 cm height and 15 cm outer diameter.Copper coil with 3.939 m equivalent length and 0.6 cm outer diameter was used to carry the hot fluid(water).Four different cold fluid(shell side)flow rates(Q_(s)=2;4;6 and 8 LPM)Þunder laminar flow conditions(316≤Re≤1223),constant hot(coil side)flow rate fluid rates(Q_(h)=1 LPM),four different injected air flow rates(Q_(a)=0:5;1;1:5 and 2 LPM),invariant temperature difference(ΔT=20°C),and constant bubble’s number(1400)were tested.To demonstrate the effect of bubble size,a sparger with orifice diameters of 0.1,0.8,and 1.5 mm was manufactured and used in the study.The overall heat transfer coefficient(U),NTU,effectiveness,and pressure loss were invested.The experimental results clearly showed that the heat exchanger’s thermal efficiency significantly improved with increasing the shell side flow rate and the injected air flow rate.The maximum improvement in U,NTU,and effectiveness was 153%,153%,and 68%,respectively.The thermal performance of the heat exchanger was shown to be improved with increasing the bubble size.Although the latter finding agrees with recent CFD published results,more studies need to be confirmed.展开更多
Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contrib...Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contribute to mobilize metal ions by increasing the bioavailable fraction. Some studies have evidenced that heavy metal-resistant bacteria can enhance metal uptake by hyperaccumulator plants. Lead-resistant bacteria which could help to increase the lead uptake by Scirpus grossus was isolated and screened. The samples were taken from plant roots after being exposed in a range finding test by spiking analytical grade of Pb(NO3)2 solution in variation of Pb concentrations. The results of rhizobacteria isolation showed that there were several colonies having resistance to grow and survive in contaminated environment even the host plant had withered. Only a few of rhizobacteria colonies were affected by high concentrations of lead exposure during screening test. The screening test was conducted by growing the isolated colonies on plates containing tryptic soy agar (TSA) medium containing of 200, 400 and 600 mg/L Pb solution including the plate with only TSA media without any lead exposure acting as a control medium, and incubating them at 30℃ for 72 hours. Isolation of bacteria from rhizosphere had found 47 colonies including several colonies from the withered plants. These all 47 colonies then become 28 after characterization by using color and colony morphology, followed by Gram stain, catalase, oxidase and motility test. The screening test of lead resistant bacteria colonies resulted 3 groups which is scored high, medium and low. The screened colonies will then be used for further study.展开更多
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d...Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.展开更多
Rechargeable aqueous zinc(Zn)-metal batteries hold great promise for next-generation energy storage systems.However,their practical application is hindered by several challenges,including dendrite formation,corrosion,...Rechargeable aqueous zinc(Zn)-metal batteries hold great promise for next-generation energy storage systems.However,their practical application is hindered by several challenges,including dendrite formation,corrosion,and the competing hydrogen evolution reaction.To address these issues,we designed and fabricated a composite protective layer for Zn anodes by integrating carbon nanotubes(CNTs)with chitosan through a simple and scalable scraping process.The CNTs ensure uniform electric field distribution due to their high electrical conductivity,while protonated chitosan regulates ion transport and suppresses dendrite formation at the anode interface.The chitosan/CNTs composite layer also facilitates smooth Zn^(2+)deposition,enhancing the stability and reversibility of the Zn anode.As a result,the chitosan/CNTs@Zn anode demonstrates exceptional cycling stability,achieving over 3000 h of plating/stripping with minimal degradation.When paired with a V_(2)O_(5)cathode,the composite-protected anode significantly improves the cycle stability and energy density of the full cell.Techno-economic analysis confirms that batteries incorporating the chitosan/CNTs protective layer outperform those with bare Zn anodes in terms of energy density and overall performance under optimized conditions.This work provides a scalable and sustainable strategy to overcome the critical challenges of aqueous Zn-metal batteries,paving the way for their practical application in next-generation energy storage systems.展开更多
A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of conti...A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of continuous jet-pump Draft Tube Magma (DTM)-type crystallizers with internal circulation of suspension (upward/downward). Interactions between constructional, hydrodynamic and kinetic factors were established and discussed. Nucleation and linear growth rates of struvite crystals were calculated on the basis of population density distribution. Kinetic model of idealized Mixed Suspension Mixed Product Removal (MSMPR) crystallizer considering the size-dependent growth mechanism was applied (Rojkowski hyperbolic equation). For comparison purposes the kinetic data corre- sponded to a simpler, continuous draft tube-type crystallizer equipped with propeller agitator were analyzed. It was concluded that crystal product of larger size was withdrawn from the jet-pump DTM crystallizer of the descending flow of suspension in a mixing chamber.展开更多
The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural...The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural and optical properties using X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), X-ray photoelectron spectroscopy(XPS), nitrogen physisorption analysis, UV-vis spectroscopy and photoluminescence(PL) spectroscopy. The characterization results indicated that the presence of CeO2 stabilized the anatase phase of TiO2, decreased its crystallite size, increased the surface area, reduced the band gap energy and lowered the rate of electron-hole pair recombination. The CeO2-TiO2 photocatalyst showed an increased methanol yield of 18.6 μmol/g under visible light irradiation, compared to the bare TiO2(6.0 μmol/g).展开更多
基金Financial support was provided by the Chinese Academy of Sciences–The World Academy of Sciences(CAS-TWAS)president fellowship。
文摘The development of catalytic materials for the recycling CO_(2) through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this field,the reported catalysts rarely deviate from the traditionally supported metal nanoparticle morphology,with the most simplistic method of enhancement being the addition of more metals to an already complex composition.Encapsulated catalysts,especially yolk@shell catalysts with hollow voids,offer answers to the most prominent issues faced by this field,coking and sintering,and further potential for more advanced phenomena,for example,the confinement effect,to promote selectivity or offer greater protection against coking and sintering.This work serves to demonstrate the current position of catalyst development in the fields of thermal CO_(2) reforming and hydrogenation,summarizing the most recent work available and most common metals used for these reactions,and how yolk@shell catalysts can offer superior performance and survivability in thermal CO_(2) reforming and hydrogenation to the more traditional structure.Furthermore,this work will briefly demonstrate the bespoke nature and highly variable yolk@shell structure.Moreover,this review aims to illuminate the spatial confinement effect and how it enhances yolk@shell structured nanoreactors is presented.
文摘In this study, shea residues (<em>Vitellaria paradoxa</em>) dumped in the wild by the units processing almonds into butter were used in the production of activated carbons. Shea nut shells harvested in the locality of Baktchoro, West Tandjile Division of Chad were used as a precursor for the preparation of activated carbons by chemical activation with phosphoric acid (H<sub>3</sub>PO<sub>4</sub>) and sulphuric acid (H<sub>2</sub>SO<sub>4</sub>). Central Composite Design (CCD) was used to optimize the preparation conditions, and the factors used were concentration of activating agent (1 - 5 M), carbonization temperature (400<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C - 700<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C) and residence time (30 - 120 min). The studies showed that at optimal conditions the yield was 51.45% and 42.35%, while the iodine number (IN) was 709.45 and 817.36 mg/g for CAK-P (phosphoric acid activated carbon) and CAK-S (sulphuric acid activated carbon) respectively. These two activated carbons (ACs) which were distinguished by their considerable iodine number, were variously characterized by elementary analysis, pH at the point of zero charge (pHpzc), bulk density, moisture content, Boehm titration, Fourier transform infrared spectroscopy, BET adsorption and scanning electron microscopy. These analyses revealed the acidic and microporous nature of CAK-P and CAK-S carbons, which have a specific microporous surface area of 522.55 and 570.65 m<sup>2</sup>·g<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup> respectively.
基金This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA16020405)National Natural Science Foundation of China(Nos.21821005,81772417,and 21902160)。
文摘By the virtue of their olfactory,physicochemical,and biological characteristics,essential oils(EOs)have drawn wide attention as additives in daily chemicals like perfume or personal care products.Nevertheless,they are physicochemically unstable and susceptible to degradation or loss.Microencapsulation offers a feasible strategy to stabilize and prolong release of EO.This review summarizes the recognized benefits and functional properties of various preparation and characterization methods,wherein innovative fabrication strategies and their formation mechanisms are especially emphasized.Progress in combining detecting/measuring technologies with kinetic modelling are discussed,to give an integral approach of controlling the dynamic release of encapsulated EOs.Moreover,new development trends of EOs capsules are also highlighted.
基金financially supported by the National Natural Science Foundation of China (Nos.21868016, 21763018,22005296 and 21875096)the Key Laboratory for Environment and Energy Catalysis of Jiangxi Province (No. 20181BCD40004)+1 种基金the Natural Science Foundation of Jiangxi Province (No.20181BAB203016)the Graduate Students Innovation Special Foundation of Jiangxi Province (No.YC2021-B014)。
文摘The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process screening different pH environments.These Ni/Y_(2)O_(3)catalysts were applied to efficiently produce CO_(x)-free H2through ammonia decomposition.We identify a significant impact of Y_(2)O_(3)supports on nickel nanoclusters sizes and dispersion.The experimental results show that Ni/Y11 catalyst achieves 100% ammonia decomposition conversion under a gas hour space velocity(GHSV) of 12,000 ml·h^(-1)·gcat^(-1) and temperature of 650℃.Such a high level of activity over Ni/Y11 catalyst was attributed to a large specific surface area,appropriate alkalinity,and small Ni nanoparticles diameter with high dispersion.
基金NPRP Grant # 10-0127-170270 from Qatar National Research FundMI-2017-002 grant from Universiti Kebangsaan Malaysia。
文摘Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide(SGO) was used as a high-efficiency adsorbent to remove Congo red(CR) and Cadmium(Ⅱ) from aqueous solutions. The effects of solution initial concentration(20 to 120 mg/l), solution pH(pH 2 to 7), adsorption duration(0 to 140 min) and temperature(298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd(Ⅱ) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Q max for CR and Cd(Ⅱ) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd(II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy( H) and Gibbs free energy( G) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO( π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd(Ⅱ) from an aqueous solu-tion, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.
文摘This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternatives for liquid fuel and aviation industry is first discussed.Key insights encompass the evolutionary progression of biofuel production from first-generation to second-generation biofuels,with a focus on utilizing non-food sources like woody biomass for enhanced sustainability.Available data from the literature on techno-economic assessments of various SAF production pathways are analyzed including production costs,conversion efficiency,and scalability.Moreover,results of lifecycle assessments associated with different SAF production pathways are presented,providing essential insights for decision-making processes.The challenges of scaling up woody biomass-based SAF production are discussed based on the assessment results,and recommendations are proposed to steer stakeholders towards a greener and more sustainable trajectory for aviation operations.
基金support for this work has been obtained from the Junta de Andalucía projects with reference P20-00594 co-funded by the European Union FEDER。
文摘The Intergovernmental Panel on Climate Change(IPCC)recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target.The implementation of renewables should provide major opportunities and enable a more secure and decentralised energy supply system.Renewable fuels provide long-term solutions for the transport sector,particularly for applications where fuels with high energy density are required.In addition,it helps reducing the carbon footprint of these sectors in the long-term.Information on biomass characteristics feedstock is essential for scaling-up gasification from the laboratory to industrial-scale.This review deals with the transformation biogenic residues into a valuable bioenergy carrier like biomethanol as the liquid sunshine based on the combination of modified mature technologies such as gasification with other innovative solutions such as membranes and microchannel reactors.Tar abatement is a critical process in product gas upgrading since tars compromise downstream processes and equipment,for this,membrane technology for upgrading syngas quality is discussed in this paper.Microchannel reactor technology with the design of state-of-the-art multifunctional catalysts provides a path to develop decentralised biomethanol synthesis from biogenic residues.Finally,the development of a process chain for the production of(i)methanol as an intermediate energy carrier,(ii)electricity and(iii)heat for decentralised applications based on biomass feedstock flexible gasification,gas upgrading and methanol synthesis is analysed.
基金support from EPSRC-New Investigator Award 2020 (EP/V002260/1)The Faraday Institute-Battery Study and Seed Research Project (FIRG052)+2 种基金The Royal Society-International Exchanges 2021 Cost Share (NSFC)(IECNSFC211074)the China Scholarship Council (CSC, No. 201806130168)the International Postdoctoral Exchange Fellowship Program (Grant No. PC2022020)
文摘As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
文摘Objective:To evaluate the antibacterial activity of essential oil from Trigonella foenumgraecum seeds powder,and identify the compounds from the extracted oil.Methods:The seeds powder of Trigonella foenum-graecum was subjected to Clevenger extractor.Seven strains of bacteria were used to test antibacterial activity of the extract.The activity against bacteria was tested by disk diffusion method using Whatman No.1filter paper.Gas chromatography mass spectrometry analysis was performed with an Agilent7890/5975B-gas chromatography/mass selective detector.Results:The hydrodistillation of seeds powder yielded 0.285%(v/w)of oil.Disk diffusion of the oil showed bactericidal activity against both Gram negative and Gram positive bacteria of tasted strains.The inhibition zone ranged from(8±0)mm to(15.0±0.7)mm depending on microbial strains.Gas chromatography mass spectrometry analysis showed14 different compounds.The total compounds represented 80.96%of the oil.Conclusions:The antibacterial activity is due to the effects of different biological active compounds present in the extract.Identification of the compounds may help to develop new effective antimicrobial agent(s).Further researches on purification,characterization and toxicology of the active compounds are needed.
基金the financial support for this work provided by the LRGS/2013/UKM-UKM/PT/03 grant from the Ministry of Education Malaysia
文摘In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO performances including water flux and bidirectional transport of succinate and chloride anions were systematically examined using cellulose triacetate-based FO membrane. Additionally, real seawater was explored as draw solution. Experimental results revealed that the pH-dependent speciation of succinic acid can affect the FO performances. Ionization of succinic acid at higher solution pH enhanced the osmotic pressure of feed solution, thus leading to lower water flux performance. A strong effect was pointed out on the succinate rejection for which nearly 100% rejections were achieved at pH above its pKa2 value. The rejection of succinate increased in the following order of chemical form: C2H4C2O4H2 〈 C2H4C2OH- 〈 C2H4C2O24-. With real seawater as the draw solution, low to moderate water fluxes (〈4 L. m- 2. h- 1 ) were observed. The divalent succinate anion was highly retained in the feed side despite differences in the succinic acid feed concentration at pH of approximately 6.90.
文摘Batch trials were carried out to determine the methane potential yields of some typical organic wastes generated in the region of Cantabria (Spain): cocoa shell, cheese whey and sludges from dairy industry. Anaerobic co-digestion trials of these wastes with dairy manure were also investigated in batch at 35℃. Cheese whey obtained similar methane yields than dairy manure, between 17.5 and 19.3 L CH4kg-1 cheese whey compared with 18.0 L CH4kg-1 manure. Methane yields of various sludge samples collected from wastewater treatment facilities of dairy industries were influenced by its origin. Sludge samples from fat separation devices were the most productive in terms of specific methane yields compared with biological sludge from an aerobic reactor. Sludge samples from fat separator reached specific methane productivities of 350 and 388 L CH4kg-1 VS (10.5 and 24.1 L CH4kg-1 sludge), whereas biological sludge yielded 125 L CH4kg-1 VS (12.6 L CH4kg-1 sludge). The methane potential of sludge samples was influenced by solids content. Cocoa shell resulted to be an interesting waste for anaerobic digestion due to its high VS content, yielding 195 L CH4kg-1 cocoa shell. It is a waste that can considerably improve methane yields in anaerobic co-digestion with dairy manure. However, at proportions of 10% cocoa shell, the process was hindered by hydrolysis of particulate matter. Anaerobic digestion at higher temperatures (thermophilic range) could be a better option for this kind of waste. Co-digestion of 5% cocoa shell with 35% dairy sludge and 60% dairy manure resulted in 80.5% higher methane production compared to anaerobic digestion of dairy manure alone.
基金supported by the Singapore AcRF Tier 1 Grant(RG 19/09)the A*STAR SERC Grant(102 101 0020)
文摘In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study follows on to consider the impact of process parameters (catalyst preparation and reaction conditions), in conjunction with catalyst composition (weight loadings of Au and ZnO, and the total weight of the catalyst), as the optimization of the process parameters simultaneously optimized the catalyst composition. The optimization target is the reactivity of this important reaction. These factors were first optimized using response surface methodology (RSM) with 25 experiments, to obtain the optimum: 100 mg of 1.0%Au-4.1%ZnO/Al2O3 catalyst with 220℃ calcination and 100℃ reduction. After optimization, the main effects and interactions of these five factors were studied using statistical sensitivity analysis (SA). Certain observations from SA were verified by reaction mechanism, reactivity test and/or characterization techniques, while others need further investigation.
文摘The sonochemical decolorization of Methylene Orange was studied using a 24 kHz Ultrasound device with a 1.4 cm diameter horn. pH, power density, the effects of pH and power density on decolorization were discussed. The combined effect of radiate time, the initial concentration of dyes and the addition of Fe^2+ on the decolorization was studied using response surface methodology. The results showed that the factorial central composite design was successfully employed for experimental design and predication of the results. AtpH = 2.8, T=30℃, power denstity= 300 W/L and Fe^2+ of 2 mg/L, the decolorization percentage of 5 mg/L dye solution reached 96% after 60 mill ultreatment. The rate of decolorization of the dye was greatly improved in the presence of Fe^2+. The sonolysis of the dye followed first-order kinetics.
基金financial support of the EPSRC grant EP/J020184/1the UKCCS Research Centre (www.ukccsrc.ac.uk)funded by the EPSRC as part of the RCUK Energy Programme(EP/K000446/1)
文摘Chemical absorption is a crucial step for several chemical processes such as ammonia production, coal gasification, methane reforming,ethylene oxide manufacturing and treatment of associated gas streams [1]. It is considered one of the main processes to eliminate CO_2 emissions from power plants by post-combustion.Use of new solvents are of high interest in chemical absorption for carbon capture. For the design of the absorption and desorption columns it is essential to know the vapour-liquid equilibrium(VLE), heat of absorption and densities. N,N-diethylethanolamine(DEEA) appeared as one of the amines with the lowest amount of energy needed for its regeneration [2], which would directly decrease the operation costs. DEEA has a high CO_2 loading of 1 mol/mol of amine compared to the traditional MEA solvent(0.5 mol/mol amine) and is obtained from renewable sources[1]. The main weakness is its low absorption rate and consequently the use of promoters is desirable.In this work, a thermodynamic model based on the electrolyte non-random two-liquid theory(eNRTL) was created and fitted to correlate and predict the partial and total pressures of the unloaded and loaded aqueous DEEA solutions. New interaction parameters were obtained for the binary and tertiary system. This model represents the vapour pressures of the pure components, DEEA and H_2 O, with AARD of 1.9% and 1.73%respectively. Furthermore, the fitted model predicts the total pressure above the binary system, H_2O-DEEA, with AARD of 0.05%. The excess of enthalpy and densities are predicted with AARD of 5.63% and 1.38% respectively. The tertiary system, H_2O-DEEA-CO_2, is fitted for 2 M and5 M DEEA solutions with loading between 0.042 and 0.9 mol CO_2/mol amine up to 80 ℃. Results of CO_2 partial pressures and total pressures are reproduced, with AARD of 19.45% and 16.18% respectively. Densities are predicted with an AARD of 1.52%.
文摘In the present study,the effect of injecting air bubble size on the thermal performance of a vertical counter-current shell and coiled tube heat exchanger is experimentally investigated.The experiments were accomplished in a cylindrical shape heat exchanger with a 50 cm height and 15 cm outer diameter.Copper coil with 3.939 m equivalent length and 0.6 cm outer diameter was used to carry the hot fluid(water).Four different cold fluid(shell side)flow rates(Q_(s)=2;4;6 and 8 LPM)Þunder laminar flow conditions(316≤Re≤1223),constant hot(coil side)flow rate fluid rates(Q_(h)=1 LPM),four different injected air flow rates(Q_(a)=0:5;1;1:5 and 2 LPM),invariant temperature difference(ΔT=20°C),and constant bubble’s number(1400)were tested.To demonstrate the effect of bubble size,a sparger with orifice diameters of 0.1,0.8,and 1.5 mm was manufactured and used in the study.The overall heat transfer coefficient(U),NTU,effectiveness,and pressure loss were invested.The experimental results clearly showed that the heat exchanger’s thermal efficiency significantly improved with increasing the shell side flow rate and the injected air flow rate.The maximum improvement in U,NTU,and effectiveness was 153%,153%,and 68%,respectively.The thermal performance of the heat exchanger was shown to be improved with increasing the bubble size.Although the latter finding agrees with recent CFD published results,more studies need to be confirmed.
文摘Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contribute to mobilize metal ions by increasing the bioavailable fraction. Some studies have evidenced that heavy metal-resistant bacteria can enhance metal uptake by hyperaccumulator plants. Lead-resistant bacteria which could help to increase the lead uptake by Scirpus grossus was isolated and screened. The samples were taken from plant roots after being exposed in a range finding test by spiking analytical grade of Pb(NO3)2 solution in variation of Pb concentrations. The results of rhizobacteria isolation showed that there were several colonies having resistance to grow and survive in contaminated environment even the host plant had withered. Only a few of rhizobacteria colonies were affected by high concentrations of lead exposure during screening test. The screening test was conducted by growing the isolated colonies on plates containing tryptic soy agar (TSA) medium containing of 200, 400 and 600 mg/L Pb solution including the plate with only TSA media without any lead exposure acting as a control medium, and incubating them at 30℃ for 72 hours. Isolation of bacteria from rhizosphere had found 47 colonies including several colonies from the withered plants. These all 47 colonies then become 28 after characterization by using color and colony morphology, followed by Gram stain, catalase, oxidase and motility test. The screening test of lead resistant bacteria colonies resulted 3 groups which is scored high, medium and low. The screened colonies will then be used for further study.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(62225303)the National Natural Science Fundation of China(62303039,62433004)+2 种基金the China Postdoctoral Science Foundation(BX20230034,2023M730190)the Fundamental Research Funds for the Central Universities(buctrc202201,QNTD2023-01)the High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology
文摘Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.
基金supported by the National Natural Science Foundation of China(22279139,62227815,22465026,22469015)the National Key R&D Program of China(2022YFA1504500)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2024JQ06,2022MS2010,2024MS05005)Inner Mongolia University Postgraduate Scientific Research Innovation Project(11200-5223737)。
文摘Rechargeable aqueous zinc(Zn)-metal batteries hold great promise for next-generation energy storage systems.However,their practical application is hindered by several challenges,including dendrite formation,corrosion,and the competing hydrogen evolution reaction.To address these issues,we designed and fabricated a composite protective layer for Zn anodes by integrating carbon nanotubes(CNTs)with chitosan through a simple and scalable scraping process.The CNTs ensure uniform electric field distribution due to their high electrical conductivity,while protonated chitosan regulates ion transport and suppresses dendrite formation at the anode interface.The chitosan/CNTs composite layer also facilitates smooth Zn^(2+)deposition,enhancing the stability and reversibility of the Zn anode.As a result,the chitosan/CNTs@Zn anode demonstrates exceptional cycling stability,achieving over 3000 h of plating/stripping with minimal degradation.When paired with a V_(2)O_(5)cathode,the composite-protected anode significantly improves the cycle stability and energy density of the full cell.Techno-economic analysis confirms that batteries incorporating the chitosan/CNTs protective layer outperform those with bare Zn anodes in terms of energy density and overall performance under optimized conditions.This work provides a scalable and sustainable strategy to overcome the critical challenges of aqueous Zn-metal batteries,paving the way for their practical application in next-generation energy storage systems.
文摘A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of continuous jet-pump Draft Tube Magma (DTM)-type crystallizers with internal circulation of suspension (upward/downward). Interactions between constructional, hydrodynamic and kinetic factors were established and discussed. Nucleation and linear growth rates of struvite crystals were calculated on the basis of population density distribution. Kinetic model of idealized Mixed Suspension Mixed Product Removal (MSMPR) crystallizer considering the size-dependent growth mechanism was applied (Rojkowski hyperbolic equation). For comparison purposes the kinetic data corre- sponded to a simpler, continuous draft tube-type crystallizer equipped with propeller agitator were analyzed. It was concluded that crystal product of larger size was withdrawn from the jet-pump DTM crystallizer of the descending flow of suspension in a mixing chamber.
基金the Ministry of Education (MOE), Universiti Kebangsaan Malaysia and Universiti Malaysia Pahang for financial support of this research under RAGS (RDU131418) and FRGS (RDU120112)
文摘The performance of CeO2-TiO2 photocatalyst for the photocatalytic reduction of CO2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural and optical properties using X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), X-ray photoelectron spectroscopy(XPS), nitrogen physisorption analysis, UV-vis spectroscopy and photoluminescence(PL) spectroscopy. The characterization results indicated that the presence of CeO2 stabilized the anatase phase of TiO2, decreased its crystallite size, increased the surface area, reduced the band gap energy and lowered the rate of electron-hole pair recombination. The CeO2-TiO2 photocatalyst showed an increased methanol yield of 18.6 μmol/g under visible light irradiation, compared to the bare TiO2(6.0 μmol/g).