期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High quality large-scale nickel-rich layered oxides precursor co-precipitation via domain adaptation-based machine learning
1
作者 Junyoung Seo Taekyeong Kim +5 位作者 Kisung You Youngmin Moon Jina Bang Waunsoo Kim Il Jeon Im Doo Jung 《InfoMat》 2025年第7期126-142,共17页
Nickel-rich layered oxides(LiNixCoyMnzO2,NCM)are among the most promising cathode materials for high-energy lithium-ion batteries,offering high specific capacity and output voltage at a relatively low cost.However,ind... Nickel-rich layered oxides(LiNixCoyMnzO2,NCM)are among the most promising cathode materials for high-energy lithium-ion batteries,offering high specific capacity and output voltage at a relatively low cost.However,industrialscale co-precipitation presents significant challenges,particularly in maintaining particle sphericity,ensuring a stable concentration gradient,and preserving production yield when transitioning from lab-scale compositions.This study addresses a critical issue in the large-scale synthesis of nickel-rich NCM(x=0.8381):nickel leaching,which compromises particle uniformity and battery performance.To mitigate this,we optimize the reaction process and develop an artificial intelligence-driven defect prediction system that enhances precursor stability.Our domain adaptation based machine learning model,which accounts for equipment wear and environmental variations,achieves a defect detection accuracy of 97.8%based on machine data and process conditions.By implementing this approach,we successfully scale up NCM precursor production to over 2 tons,achieving 83%capacity retention after 500 cycles at a 1C rate.In addition,the proposed approach demonstrates the formation of a concentration gradient in the composition and a high sphericity of 0.951(±0.0796).This work provides new insights into the stable mass production of NCM precursors,ensuring both high yield and performance reliability. 展开更多
关键词 domain adaptation machine learning mass production nickel-rich layered oxides cathode process monitoring schedule optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部