In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the dep...In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the deployed net-work environment is challenging.This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory(s-LSTM)and Bi-directional Long Short Term Memory(b-LSTM).It is used to hold the routing information and random routing to attain superior performance.The pro-posed model is trained based on the searching and detection mechanisms to com-pute the packet delivery ratio(PDR),end-to-end(E2E)delay,throughput,etc.The anticipated s-LSTM and b-LSTM model intends to ensure Quality of Service(QoS)even in changing network topology.The performance of the proposed b-LSTM and s-LSTM is measured by comparing the significance of the model with various prevailing approaches.Sometimes,the performance is measured with Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)for mea-suring the error rate of the model.The prediction of error rate is made with Learn-ing-based Stochastic Gradient Descent(L-SGD).This gradual gradient descent intends to predict the maximal or minimal error through successive iterations.The simulation is performed in a MATLAB 2020a environment,and the model performance is evaluated with diverse approaches.The anticipated model intends to give superior performance in contrast to prevailing approaches.展开更多
Pan evaporation is an important climatic variable for developing efficient water resource management strategies.In the past,many machine learning models are reported in the literature for pan evaporation modeling usin...Pan evaporation is an important climatic variable for developing efficient water resource management strategies.In the past,many machine learning models are reported in the literature for pan evaporation modeling using the different combinationof available climatic variables.In order to develop a novel model with improved accuracy and reduced computational complexity,the functional link artificial neural network(FLANN)is chosen as an architecture to estimate daily pan evaporation in three agro-climatic zones(ACZs)of Chhattisgarh state in east-central India.Single neuron and single layer in its structure make it less complex as compared to other multilayer neural networks and neuro-fuzzy based hybrid models.Estimation results obtained with the FLANN model are compared with those obtained by multi-layer artificial neural networks(MLANN)and two empirical methods using the same raw data and corresponding features.Statistical indices like root mean square error(RMSE),mean absolute error(MAE)and efficiency factor(EF)is also computed to evaluate the model performance.It is demonstrated that pan evaporation estimates obtained with the proposed FLANN models provide an improved estimation of pan evaporation(RMSE=0.85 to 1.27 mm d^(-1),MAE=0.63 to 0.95 mm d^(-1) and EF=0.70 to 0.89)as compared to MLANN(RMSE=0.94 to 1.58 mm d^(-1),MAE=0.73 to 1.14 mm d^(-1) and EF=0.62 to 0.88)and empirical(RMSE=1.19 to 2.19 mm d^(-1),MAE=0.91 to 1.62 mm d^(-1) and EF=0.49 to 0.88)models in different ACZs.展开更多
文摘In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the deployed net-work environment is challenging.This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory(s-LSTM)and Bi-directional Long Short Term Memory(b-LSTM).It is used to hold the routing information and random routing to attain superior performance.The pro-posed model is trained based on the searching and detection mechanisms to com-pute the packet delivery ratio(PDR),end-to-end(E2E)delay,throughput,etc.The anticipated s-LSTM and b-LSTM model intends to ensure Quality of Service(QoS)even in changing network topology.The performance of the proposed b-LSTM and s-LSTM is measured by comparing the significance of the model with various prevailing approaches.Sometimes,the performance is measured with Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)for mea-suring the error rate of the model.The prediction of error rate is made with Learn-ing-based Stochastic Gradient Descent(L-SGD).This gradual gradient descent intends to predict the maximal or minimal error through successive iterations.The simulation is performed in a MATLAB 2020a environment,and the model performance is evaluated with diverse approaches.The anticipated model intends to give superior performance in contrast to prevailing approaches.
文摘Pan evaporation is an important climatic variable for developing efficient water resource management strategies.In the past,many machine learning models are reported in the literature for pan evaporation modeling using the different combinationof available climatic variables.In order to develop a novel model with improved accuracy and reduced computational complexity,the functional link artificial neural network(FLANN)is chosen as an architecture to estimate daily pan evaporation in three agro-climatic zones(ACZs)of Chhattisgarh state in east-central India.Single neuron and single layer in its structure make it less complex as compared to other multilayer neural networks and neuro-fuzzy based hybrid models.Estimation results obtained with the FLANN model are compared with those obtained by multi-layer artificial neural networks(MLANN)and two empirical methods using the same raw data and corresponding features.Statistical indices like root mean square error(RMSE),mean absolute error(MAE)and efficiency factor(EF)is also computed to evaluate the model performance.It is demonstrated that pan evaporation estimates obtained with the proposed FLANN models provide an improved estimation of pan evaporation(RMSE=0.85 to 1.27 mm d^(-1),MAE=0.63 to 0.95 mm d^(-1) and EF=0.70 to 0.89)as compared to MLANN(RMSE=0.94 to 1.58 mm d^(-1),MAE=0.73 to 1.14 mm d^(-1) and EF=0.62 to 0.88)and empirical(RMSE=1.19 to 2.19 mm d^(-1),MAE=0.91 to 1.62 mm d^(-1) and EF=0.49 to 0.88)models in different ACZs.