The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface t...The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.展开更多
The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by...The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by a PARSIVEL2disdrometer in East Ujimqin County(EUC),China.It is found that only 7.94% of the 15 664 one-min precipitation samples meet classification criteria as convective rain(CR),but its contribution to the total rainfall amount is 63.87%.Notably,40.72% of the rainfall comes from large-sized raindrops(D> 3 mm),despite the fact that large-sized raindrops account for only 1.73% of the CR total number concentration.Further results show that the mean value of mass-weighted mean diameters(Dm) is larger(2.43 mm) and generalized intercepts(lgN_(W)) is lower(3.19) in CR,aligning with a "continentallike" cluster,which is mainly influenced by the joint impact of in-cloud ice-based processes and the below-cloud environmental background.Also,the empirical relationships of shape-slope(μ-Λ),radar reflectivity-rain rate(Z-R),and rainfall kinetic energy(KE_(time)-Rand KE_(time)-Z) are localized.To quantitatively analyze the impact of DSD parameters on kinetic energy estimation,power-law KE_(time)-R and KE_(time)-Z relationships are derived based on the normalized gamma distribution.N_(W)takes precedence over μ in affecting variabilities of multiplicative coefficients,especially for KE_(time)-R relationship where the multiplicative coefficient is proportional to N_(W)^(-0.287).It should be noted that although the proportion of CR occurring throughout the summer is small,raindrops with lower N_(W) and larger Dmwill generate higher KE_(time),which will bring a higher potential risk of soil erosion in semi-arid regions over IMP.展开更多
The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component...The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.展开更多
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment comp...A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.展开更多
The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical ...The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.展开更多
In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techn...In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techniques, we calculated the earth crust thicknesses and Vp/Vs ratios below the stations and obtained 35 valid data points. At the same time, we evenly stacked the receiver functions at the same station and superimposed the two profiles' cross sections of the main tectonic units. The results show a clear difference between the crust thicknesses of different tectonic units. Because of the magma underplatting and delimanition of the lower crust in the role of deep process, the West Yunnan's crust can be divided two kinds-mafic-ultramafic and feldspathic crusts. The research also shows that the mafic-ultramafic crust corresponds to a good background of mineralization. The delamination of the lower crust is one of the leading causes for moderate to strong earthquake prone in central Yunnan. The thinner crust and high velocity ratio as well as the multimodal structure of Ps in the Tengchong volcanic area confirms existence of a deep process of the strong magma underplating. Due to the basic crust structure and nature, it is believed that the Honghe fault is a main suture of the Gondwana and Eurasia continents.展开更多
The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon i...The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon intensity in numerical models.In this study,buoy observations and numerical simulations from an air-sea coupled model are used to assess the surface heat flux changes and impacts of the drag coefficient parameterization schemes on its simulations during the passage of Typhoon Kalmaegi(2014).Three drag coefficient schemes,which make the drag coefficient increase,level off,and decrease,respectively,are considered.The air-sea coupled model captured both trajectory and intensity changes better than the atmosphere-only model,though with relatively weaker sea surface cooling(SSC)compared to that captured by buoy observations,which led to relatively higher heat flux and thus a stronger typhoon.Different from previous studies,for a moderate typhoon,the coupled simulation with the increasing drag coefficient scheme outputted an intensity most consistent with the observation because of the strongest SSC,reasonable ratio of latent and sensible heat exchange coefficients,and an obvious reduction in the overestimated surface heat flux among all experiments.Results from sensitivity experiments showed that surface heat flux was significantly determined by the drag coefficient-induced SSC rather than the resulting wind speed changes.Only when SSC differs indistinctively(<0.4°C)between the coupled simulations,heat flux showed a weak positive correlation with the drag coefficient-impacted 10-m wind speed.The drag coefficient also played an important role in decreasing heat flux even a long time after the passage of Kalmaegi because of the continuous upwelling from deeper ocean layers driven by the impacted momentum flux through the air-sea interface.展开更多
The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The expl...The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The explained variance of the reconstruction is 34.8%. In the past 209 years, there are 4 colder and 4 warmer periods according to the reconstructed series. A period of 3.33-year is found significant based on the power spectrum method. Abrupt changes are also detected in the reconstructed series with 30-year time scale based on the smoothing t-test, smoothing F-test and Le Page test methods. Significant abrupt changes in mean value are observed for around 1871 and 1900, and a significant abrupt change in standard deviation is observed for around 1851.展开更多
A brief introduction of a global atmospheric circulation model CCM3, which is used to simulate the precipitation in China, the height and the flow fields of the atmosphere, is made and the reliability of simulation is...A brief introduction of a global atmospheric circulation model CCM3, which is used to simulate the precipitation in China, the height and the flow fields of the atmosphere, is made and the reliability of simulation is analyzed. According to the negative correlation between rainfall in the first flood period in South China (FFSC) and sea surface temperature anomalies (SSTA) in a key region in western Pacific warm pool (West Region), two sensitive experiments are designed to investigate the effects of the latter on the former and the possible physical mechanism is discussed. It is found that in cold water (warm water) years, the rainfall in South China (SC) is far more (less) than normal, while the rainfall in the middle and low reaches of the Yangtze River is relatively less (more). The best correlative area of precipitation is located in Guangdong Province. It matches the diagnostic result well. The effect of SSTA on precipitation of FFSC is realized through the abnormality of atmospheric circulation and tested by a P-σnine-layer regional climate model. Moreover, the simulated result of the P-σmodel is basically coincident with that of the CCM3.展开更多
Sedimentary chert phases from the Archean to the present are widely used to trace sedimentary environments and tectonic settings.Recently,chert nodules occurring within carbonates have been the subject of possible hyd...Sedimentary chert phases from the Archean to the present are widely used to trace sedimentary environments and tectonic settings.Recently,chert nodules occurring within carbonates have been the subject of possible hydrothermal or biogenic origin,in lieu of a diagenetic origin.However,chert nodules from a vast cratonic basin represent extremely rich silica accumulations but less noted is how they respond to submarine hydrothermal activity(and/or surface siliceous organism productivity).The links between the cratonic-type chert depositions and environmental changes regarding cratonic evolution need to be revisited at a large temporal-spatial scale.The chert nodules are widespread throughout the Lower Permian Taiyuan Formation in the North China Craton(NCC).Several Taiyuan chert-rich successions across the NCC have been selected to study possible links between chert deposition and cratonic evolution in scenario of partial cratonic activation of the northern NCC margin during the Late Paleozoic.Based on stratigraphic correlation,the chert nodules are ubiquitously,evenly distributed throughout the Taiyuan Formation at a large craton-basin scale from the northern to southern interior NCC.Petrological results,elemental abundances,together with silicon and oxygen isotopic compositions of chert samples infer significant hydrothermal contributions for the silica accumulations.Therefore,the cratonic-scale chert depositions of hydrothermal origin infer a giant and remote silica reservoir,linking to the large igneous province and magmatism in the NCC northern margins.The Taiyuan chert nodules could be unique marine sedimentary archives recording the Late Paleozoic NCC partial activation,which also generated continental records of igneous rocks,bauxites and tuffs.The strong tectonics of the northern margin,south-dipping topography and northward transgression of the Early Permian NCC facilitated the chert deposition on the shallow marine platform in the cratonic interior.展开更多
Detailed analysis and comparisons are made on the data of Hong Kong wind-profiler and the weather/precipitation every hour during the HUAMEX and the experiment for the monsoon of the South China Sea (SCSMEX) in 1998. ...Detailed analysis and comparisons are made on the data of Hong Kong wind-profiler and the weather/precipitation every hour during the HUAMEX and the experiment for the monsoon of the South China Sea (SCSMEX) in 1998. It is found that the wind-profiler data could reveal the meso-scale phenomena in the PBL of Southwest Monsoon, which was closely related to rainstorms. The center of the low-level jet under the altitude of 2 km, which corresponded to the appearance of heavy rain, appeared 1 to 2 hours after the center of low-level jet (LLJ) did above the 2-km altitude. An index I is designed to represent the intensity and height of the LLJ. This index can express clearly the close relationship between the precipitation and the LLJ. The results show that the wind-profiler is somewhat predictive to a rainstorm.展开更多
Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show tha...Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show that the land controls the timings of the lifetime maximum intensities in 42% of the TCs over this basin,indicating that accurate track forecasts are beneficial for TC intensity forecasts.With respect to other TCs that are not affected by the land(i.e.,Ocean-TCs),the timings of their lifetime maximum intensities are determined by multiple oceanic factors.In particular,interactions between TCs and cold-core eddies occur in a large proportion(nearly 60%)of Ocean-TCs at or shortly after the times of their lifetime maximum intensities,especially in strong TCs(categories 4 and 5),suggesting that a consideration of the above interactions is necessary for improving TC intensity forecasting skills.In addition,unfavorable oceanic heat content conditions become common as the latitude increases over 25°N,influencing half of the Ocean-TCs.Strong vertical wind shear contributes detrimentally to the atmospheric environment in 17% of the TCs over this basin,especially in moderate and weak TCs.In contrast,neither the maximum potential intensity nor the humidity in the middle level of the atmosphere plays dominant roles when TCs turn from their peak intensities to weakening.展开更多
Based on the reanalysis data of monthly mean sea surface temperature (SST) from British Hadley Center and ozone mass mixing ratio from National Aeronautics and Space Administration (NASA) during 1980-2015, two indexes...Based on the reanalysis data of monthly mean sea surface temperature (SST) from British Hadley Center and ozone mass mixing ratio from National Aeronautics and Space Administration (NASA) during 1980-2015, two indexes IOBI and IODI of the main modes characterizing SST changes in the tropical Indian Ocean——Indian Ocean Basin (IOB) and Indian Ocean Dipole (IOD) were calculated firstly, and then the correlation of SST anomaly (SSTA) in the tropical Indian Ocean and ozone mass mixing ratio in the stratosphere over East Asia from 1980 to 2015 was analyzed. Besides, the impact of SST changes in the tropical Indian Ocean on the distribution of ozone layer in East Asia was discussed. The results show that SST changes in the tropical Indian Ocean had significant effects on stratospheric ozone distribution in East Asia, and it was consistent with the temporal changes of IOB and IOD. IOBI and IODI had a certain correlation with stratospheric ozone changes in East Asia, with a particularly significant correlation in the lower stratosphere (70 hPa) and middle stratosphere (40 hPa) especially during spring and autumn.展开更多
The global asymptotic behavior of solutions for the equations of large-scale atmospheric motion with the non-stationary external forcing is studied in the infinite-dimensional Hilbert space. Based on the properties of...The global asymptotic behavior of solutions for the equations of large-scale atmospheric motion with the non-stationary external forcing is studied in the infinite-dimensional Hilbert space. Based on the properties of operators of the equations, some energy inequalities and the uniqueness theorem of solutions are obtained. On the assumption that external forces are bounded, the exsitence of the global absorbing set and the atmosphere attractor is proved, and the characteristics of the decay of effect of initial field and the adjustment to the external forcing are revealed. The physical sense of the results is discussed and some ideas about climatic numerical forecast are elucidated.展开更多
Lowland water resources management represents a challenge of the future that calls any community. Irrigated crops are grown in some areas of Burkina Faso, others are limited by a lack of irrigation infrastructure. Due...Lowland water resources management represents a challenge of the future that calls any community. Irrigated crops are grown in some areas of Burkina Faso, others are limited by a lack of irrigation infrastructure. Due to limited crop irrigation, crops and the associated populations dependent on them, depend on rain and on climatic factors. Thus, there is a need to understand and implement traditional mechanisms for managing lowland water in Dano, where climatic and geological conditions provide a sustained source of water. Here, I use a literature review combined with field work and interviews/questionnaires to estimate the potential exploitable plains to 16,056 ha or 24% of the communal area. Management mechanisms and traditional operating systems of lowland waters were clear, which helped to set the technological level of farmers, in partial control of water management.展开更多
Plague has caused the death of hundreds of millions of people throughout the human history.Today this disease is again re-emerging and hence is again becoming an increasing threat to human health in several parts of t...Plague has caused the death of hundreds of millions of people throughout the human history.Today this disease is again re-emerging and hence is again becoming an increasing threat to human health in several parts of the world.However,impacts of global climate variation(e.g.El Nino and Southern Oscillation[ENSO])and global warming on plagues are largely unknown.Using cross-spectral analysis and cross-wavelet analysis,we have analyzed the relationship between increase rate of human plague in China during 1871–2003 and the following climate factors(as measured by the Southern Oscillation Index[SOI],Sea Surface Temperature of east Pacific equator[SST]and air Temperature of the Northern Hemisphere[NHT]).We found in the frequency domain that increase rate of human plague was closely associated with SOI and SST.Cross-spectral analysis reveals that significant coherencies between increase rate of human plague and ENSO were found over short periods(2–3 years),medium periods(6–7 years)and long periods(11–12 years,30–40 years).Cross-wavelet analysis reveals that increase rate of human plague oscillates in phase with SOI,but in anti-phase with SST over periods of 2–4 years and approximately 8 years(6–10 years).These results indicate that ENSO-driven climate variation may be important for occurrences of human plague in China.However,there is a need for a further analysis of the underlying mechanism between human plague in China and ENSO.展开更多
The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon p...The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon.展开更多
When the magnitude of sub-scale ographic forcing is comparable with explicitly ordinary dynamic forcing, the drag effect reduced by ographic gravity wave is to be significant for maintaining dynamic balance of atmosph...When the magnitude of sub-scale ographic forcing is comparable with explicitly ordinary dynamic forcing, the drag effect reduced by ographic gravity wave is to be significant for maintaining dynamic balance of atmospheric circulation, as well as the momentum and energy transport. Such sub-scale ographic forcing should be introduced into numerically atmospheric model by means of drag being parameterized. Furthermore, the currently mature ographic gravity wave drag (OGWD) parameterization, i.e., the so-called first-generation (based on lineal single-wave theoretical framework) or the second-generation drag parameterization (including an important extra forcing by the contribution of critical level absorption), cannot correctly and effectly describe the vertical profile of wave stress under the influence of ambient wind shearing. Based on aforementioned consideration, a new two-wave scheme was proposed to parameterize the ographic gravity wave drag by means of freely propagating gravity waves. It starts with a second order WKB approximation, and treats the wave stress attenuations caused by either the selective critical level absorption or the classical critical level absorption explicitly; while in the regions where critical levels are absent, it transports the wave stress vertically by two sinusoidal waves and deposits them and then damps them according to the wave saturation criteria. This scheme is thus used to conduct some sample computations over the Dabie Mountain region of East China, as an example. The results showed that the new two-wave scheme is able to model the vertical distribution of the wave stress more realistically.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42230601).
文摘The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.
基金supported by the National Natural Science Foundation of China(Grant Nos.42325503,42075063,42075066,and 42021004)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant No.2023AFD096)the Beijige Foundation of NJIAS(Grant No.BJG202304).
文摘The characteristics of summertime raindrop size distribution(DSD) and associated relations in the semi-arid region over the Inner Mongolian Plateau(IMP) were investigated,utilizing five-year continuous observations by a PARSIVEL2disdrometer in East Ujimqin County(EUC),China.It is found that only 7.94% of the 15 664 one-min precipitation samples meet classification criteria as convective rain(CR),but its contribution to the total rainfall amount is 63.87%.Notably,40.72% of the rainfall comes from large-sized raindrops(D> 3 mm),despite the fact that large-sized raindrops account for only 1.73% of the CR total number concentration.Further results show that the mean value of mass-weighted mean diameters(Dm) is larger(2.43 mm) and generalized intercepts(lgN_(W)) is lower(3.19) in CR,aligning with a "continentallike" cluster,which is mainly influenced by the joint impact of in-cloud ice-based processes and the below-cloud environmental background.Also,the empirical relationships of shape-slope(μ-Λ),radar reflectivity-rain rate(Z-R),and rainfall kinetic energy(KE_(time)-Rand KE_(time)-Z) are localized.To quantitatively analyze the impact of DSD parameters on kinetic energy estimation,power-law KE_(time)-R and KE_(time)-Z relationships are derived based on the normalized gamma distribution.N_(W)takes precedence over μ in affecting variabilities of multiplicative coefficients,especially for KE_(time)-R relationship where the multiplicative coefficient is proportional to N_(W)^(-0.287).It should be noted that although the proportion of CR occurring throughout the summer is small,raindrops with lower N_(W) and larger Dmwill generate higher KE_(time),which will bring a higher potential risk of soil erosion in semi-arid regions over IMP.
基金sponsored by the National Natural Science Foundation of China under Grant No.400750112001 PIA 20026 the National Key program for Developing Basic Sciences:CHeRES(G 1998040907).
文摘The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.
基金sponsored by the National Natural Science Foundation of China under Grant Nos.49975014,40275018,and 40333025
文摘A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.
基金supported in part by NSF Grant(ATM-0727668and AGS-1061998)NOAA Grant(NA08OAR4310885)+3 种基金NASA Grants(NNX08AI74G,NNX08AI76G,and NNX09AF41G)F.Zheng is supported by the National Basic Research Program of China(GrantNos.2012CB417404and2012CB955202)the Natural Science Foundation of China(Grant No.41075064)Pei is additionally supported by China Scholarship Coun-cil(CSC) with the Ocean University of China,Qingdao,China
文摘The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.
基金part of the National Key Technology R and D Program carried out in 2007-2008supported by the Ministry of Science and Technology
文摘In our study we collected the teleseismic record of 31 broadband stations and 9 PASSCAL stations in West Yunnan, as well as extracted more than a million receiver functions. Using the waveform model and stacking techniques, we calculated the earth crust thicknesses and Vp/Vs ratios below the stations and obtained 35 valid data points. At the same time, we evenly stacked the receiver functions at the same station and superimposed the two profiles' cross sections of the main tectonic units. The results show a clear difference between the crust thicknesses of different tectonic units. Because of the magma underplatting and delimanition of the lower crust in the role of deep process, the West Yunnan's crust can be divided two kinds-mafic-ultramafic and feldspathic crusts. The research also shows that the mafic-ultramafic crust corresponds to a good background of mineralization. The delamination of the lower crust is one of the leading causes for moderate to strong earthquake prone in central Yunnan. The thinner crust and high velocity ratio as well as the multimodal structure of Ps in the Tengchong volcanic area confirms existence of a deep process of the strong magma underplating. Due to the basic crust structure and nature, it is believed that the Honghe fault is a main suture of the Gondwana and Eurasia continents.
基金supported by the National Natural Science Foundation of China under Grant Nos. 41775053, 41976003, and 42192552the National Key Research and Development Program of China under Grant Nos. 2019YFC1510001 and 2019YFC1510102support has been provided by the National Program on Global Change and Air-Sea Interaction (GASI-IPOVAI-04)
文摘The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon intensity in numerical models.In this study,buoy observations and numerical simulations from an air-sea coupled model are used to assess the surface heat flux changes and impacts of the drag coefficient parameterization schemes on its simulations during the passage of Typhoon Kalmaegi(2014).Three drag coefficient schemes,which make the drag coefficient increase,level off,and decrease,respectively,are considered.The air-sea coupled model captured both trajectory and intensity changes better than the atmosphere-only model,though with relatively weaker sea surface cooling(SSC)compared to that captured by buoy observations,which led to relatively higher heat flux and thus a stronger typhoon.Different from previous studies,for a moderate typhoon,the coupled simulation with the increasing drag coefficient scheme outputted an intensity most consistent with the observation because of the strongest SSC,reasonable ratio of latent and sensible heat exchange coefficients,and an obvious reduction in the overestimated surface heat flux among all experiments.Results from sensitivity experiments showed that surface heat flux was significantly determined by the drag coefficient-induced SSC rather than the resulting wind speed changes.Only when SSC differs indistinctively(<0.4°C)between the coupled simulations,heat flux showed a weak positive correlation with the drag coefficient-impacted 10-m wind speed.The drag coefficient also played an important role in decreasing heat flux even a long time after the passage of Kalmaegi because of the continuous upwelling from deeper ocean layers driven by the impacted momentum flux through the air-sea interface.
基金supported by the Special Research Program for Public-welfare Forestry(No. 200804001)National Science and Technology Support Program(No.2007BAC29B01)the Natural Science Foundation of China(No.40705032)
文摘The monthly mean temperature for October in the Fenglin National Natural Reserve of Wuying, in Heilongjiang province, was reconstructed for the period running from 1796 to 2004 using RES tree ring chronology. The explained variance of the reconstruction is 34.8%. In the past 209 years, there are 4 colder and 4 warmer periods according to the reconstructed series. A period of 3.33-year is found significant based on the power spectrum method. Abrupt changes are also detected in the reconstructed series with 30-year time scale based on the smoothing t-test, smoothing F-test and Le Page test methods. Significant abrupt changes in mean value are observed for around 1871 and 1900, and a significant abrupt change in standard deviation is observed for around 1851.
基金sponsored by the NSFC key project (40233037) and the "National Key Developing Programme for Basic Science" project (2004CB418300)
文摘A brief introduction of a global atmospheric circulation model CCM3, which is used to simulate the precipitation in China, the height and the flow fields of the atmosphere, is made and the reliability of simulation is analyzed. According to the negative correlation between rainfall in the first flood period in South China (FFSC) and sea surface temperature anomalies (SSTA) in a key region in western Pacific warm pool (West Region), two sensitive experiments are designed to investigate the effects of the latter on the former and the possible physical mechanism is discussed. It is found that in cold water (warm water) years, the rainfall in South China (SC) is far more (less) than normal, while the rainfall in the middle and low reaches of the Yangtze River is relatively less (more). The best correlative area of precipitation is located in Guangdong Province. It matches the diagnostic result well. The effect of SSTA on precipitation of FFSC is realized through the abnormality of atmospheric circulation and tested by a P-σnine-layer regional climate model. Moreover, the simulated result of the P-σmodel is basically coincident with that of the CCM3.
基金supported by the National Natural Science Foundation of China(Grant nos.41702029,41703018,4012123)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2017-5)the Second Tibetan Plateau Scientific Expedition(STEP)program(Grant No.2019QZKK0704)。
文摘Sedimentary chert phases from the Archean to the present are widely used to trace sedimentary environments and tectonic settings.Recently,chert nodules occurring within carbonates have been the subject of possible hydrothermal or biogenic origin,in lieu of a diagenetic origin.However,chert nodules from a vast cratonic basin represent extremely rich silica accumulations but less noted is how they respond to submarine hydrothermal activity(and/or surface siliceous organism productivity).The links between the cratonic-type chert depositions and environmental changes regarding cratonic evolution need to be revisited at a large temporal-spatial scale.The chert nodules are widespread throughout the Lower Permian Taiyuan Formation in the North China Craton(NCC).Several Taiyuan chert-rich successions across the NCC have been selected to study possible links between chert deposition and cratonic evolution in scenario of partial cratonic activation of the northern NCC margin during the Late Paleozoic.Based on stratigraphic correlation,the chert nodules are ubiquitously,evenly distributed throughout the Taiyuan Formation at a large craton-basin scale from the northern to southern interior NCC.Petrological results,elemental abundances,together with silicon and oxygen isotopic compositions of chert samples infer significant hydrothermal contributions for the silica accumulations.Therefore,the cratonic-scale chert depositions of hydrothermal origin infer a giant and remote silica reservoir,linking to the large igneous province and magmatism in the NCC northern margins.The Taiyuan chert nodules could be unique marine sedimentary archives recording the Late Paleozoic NCC partial activation,which also generated continental records of igneous rocks,bauxites and tuffs.The strong tectonics of the northern margin,south-dipping topography and northward transgression of the Early Permian NCC facilitated the chert deposition on the shallow marine platform in the cratonic interior.
基金A key project in Natural Science Foundation of China (980456032) Project 973 (G1998040907) Foundation Project for Visiting Scholar in Key Laboratory of Higher Education College
文摘Detailed analysis and comparisons are made on the data of Hong Kong wind-profiler and the weather/precipitation every hour during the HUAMEX and the experiment for the monsoon of the South China Sea (SCSMEX) in 1998. It is found that the wind-profiler data could reveal the meso-scale phenomena in the PBL of Southwest Monsoon, which was closely related to rainstorms. The center of the low-level jet under the altitude of 2 km, which corresponded to the appearance of heavy rain, appeared 1 to 2 hours after the center of low-level jet (LLJ) did above the 2-km altitude. An index I is designed to represent the intensity and height of the LLJ. This index can express clearly the close relationship between the precipitation and the LLJ. The results show that the wind-profiler is somewhat predictive to a rainstorm.
基金National Key Research and Development Program of China(2018YFC1506402)National Natural Scientific Foundations of China(41575061,41775061)JSPS KAKENHI(JP18H01283)。
文摘Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show that the land controls the timings of the lifetime maximum intensities in 42% of the TCs over this basin,indicating that accurate track forecasts are beneficial for TC intensity forecasts.With respect to other TCs that are not affected by the land(i.e.,Ocean-TCs),the timings of their lifetime maximum intensities are determined by multiple oceanic factors.In particular,interactions between TCs and cold-core eddies occur in a large proportion(nearly 60%)of Ocean-TCs at or shortly after the times of their lifetime maximum intensities,especially in strong TCs(categories 4 and 5),suggesting that a consideration of the above interactions is necessary for improving TC intensity forecasting skills.In addition,unfavorable oceanic heat content conditions become common as the latitude increases over 25°N,influencing half of the Ocean-TCs.Strong vertical wind shear contributes detrimentally to the atmospheric environment in 17% of the TCs over this basin,especially in moderate and weak TCs.In contrast,neither the maximum potential intensity nor the humidity in the middle level of the atmosphere plays dominant roles when TCs turn from their peak intensities to weakening.
基金Supported by the National Natural Science Foundation of China(41275072,41365007)(Key)Project for Applied Basic Research of Yunnan Province(2011FA031).
文摘Based on the reanalysis data of monthly mean sea surface temperature (SST) from British Hadley Center and ozone mass mixing ratio from National Aeronautics and Space Administration (NASA) during 1980-2015, two indexes IOBI and IODI of the main modes characterizing SST changes in the tropical Indian Ocean——Indian Ocean Basin (IOB) and Indian Ocean Dipole (IOD) were calculated firstly, and then the correlation of SST anomaly (SSTA) in the tropical Indian Ocean and ozone mass mixing ratio in the stratosphere over East Asia from 1980 to 2015 was analyzed. Besides, the impact of SST changes in the tropical Indian Ocean on the distribution of ozone layer in East Asia was discussed. The results show that SST changes in the tropical Indian Ocean had significant effects on stratospheric ozone distribution in East Asia, and it was consistent with the temporal changes of IOB and IOD. IOBI and IODI had a certain correlation with stratospheric ozone changes in East Asia, with a particularly significant correlation in the lower stratosphere (70 hPa) and middle stratosphere (40 hPa) especially during spring and autumn.
基金Work supported by the State Key Reseach Project on Dynamics and Predictive Theory of the Climate
文摘The global asymptotic behavior of solutions for the equations of large-scale atmospheric motion with the non-stationary external forcing is studied in the infinite-dimensional Hilbert space. Based on the properties of operators of the equations, some energy inequalities and the uniqueness theorem of solutions are obtained. On the assumption that external forces are bounded, the exsitence of the global absorbing set and the atmosphere attractor is proved, and the characteristics of the decay of effect of initial field and the adjustment to the external forcing are revealed. The physical sense of the results is discussed and some ideas about climatic numerical forecast are elucidated.
文摘Lowland water resources management represents a challenge of the future that calls any community. Irrigated crops are grown in some areas of Burkina Faso, others are limited by a lack of irrigation infrastructure. Due to limited crop irrigation, crops and the associated populations dependent on them, depend on rain and on climatic factors. Thus, there is a need to understand and implement traditional mechanisms for managing lowland water in Dano, where climatic and geological conditions provide a sustained source of water. Here, I use a literature review combined with field work and interviews/questionnaires to estimate the potential exploitable plains to 16,056 ha or 24% of the communal area. Management mechanisms and traditional operating systems of lowland waters were clear, which helped to set the technological level of farmers, in partial control of water management.
基金an Albert Einstein Professorship to N.C.Stenseth,a cooperation grant(GJHZ0701-7)supported by the Chinese Academy of Sciences.
文摘Plague has caused the death of hundreds of millions of people throughout the human history.Today this disease is again re-emerging and hence is again becoming an increasing threat to human health in several parts of the world.However,impacts of global climate variation(e.g.El Nino and Southern Oscillation[ENSO])and global warming on plagues are largely unknown.Using cross-spectral analysis and cross-wavelet analysis,we have analyzed the relationship between increase rate of human plague in China during 1871–2003 and the following climate factors(as measured by the Southern Oscillation Index[SOI],Sea Surface Temperature of east Pacific equator[SST]and air Temperature of the Northern Hemisphere[NHT]).We found in the frequency domain that increase rate of human plague was closely associated with SOI and SST.Cross-spectral analysis reveals that significant coherencies between increase rate of human plague and ENSO were found over short periods(2–3 years),medium periods(6–7 years)and long periods(11–12 years,30–40 years).Cross-wavelet analysis reveals that increase rate of human plague oscillates in phase with SOI,but in anti-phase with SST over periods of 2–4 years and approximately 8 years(6–10 years).These results indicate that ENSO-driven climate variation may be important for occurrences of human plague in China.However,there is a need for a further analysis of the underlying mechanism between human plague in China and ENSO.
基金Supported by the National Key Program: SCSMEX under Grant 98-monsoon-7-3
文摘The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon.
基金the State Natural Science Foundation of China under Grant Nos.40775034,40575017,and 90715031the Natural Science Foundation of Jiangsu under Grant No.BK99020the open project of State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences.
文摘When the magnitude of sub-scale ographic forcing is comparable with explicitly ordinary dynamic forcing, the drag effect reduced by ographic gravity wave is to be significant for maintaining dynamic balance of atmospheric circulation, as well as the momentum and energy transport. Such sub-scale ographic forcing should be introduced into numerically atmospheric model by means of drag being parameterized. Furthermore, the currently mature ographic gravity wave drag (OGWD) parameterization, i.e., the so-called first-generation (based on lineal single-wave theoretical framework) or the second-generation drag parameterization (including an important extra forcing by the contribution of critical level absorption), cannot correctly and effectly describe the vertical profile of wave stress under the influence of ambient wind shearing. Based on aforementioned consideration, a new two-wave scheme was proposed to parameterize the ographic gravity wave drag by means of freely propagating gravity waves. It starts with a second order WKB approximation, and treats the wave stress attenuations caused by either the selective critical level absorption or the classical critical level absorption explicitly; while in the regions where critical levels are absent, it transports the wave stress vertically by two sinusoidal waves and deposits them and then damps them according to the wave saturation criteria. This scheme is thus used to conduct some sample computations over the Dabie Mountain region of East China, as an example. The results showed that the new two-wave scheme is able to model the vertical distribution of the wave stress more realistically.