期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Crank-Nicolson Hermite Cubic Orthogonal Spline Collocation Method for the Heat Equation with Nonlocal Boundary Conditions
1
作者 B.Bialecki G.Fairweather J.C.Lopez-Marcos 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第4期442-460,共19页
We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the u... We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the unknown solution over the spatial interval.Using an extension of the analysis of Douglas and Dupont[23]for Dirichlet boundary conditions,we derive optimal order error estimates in the discrete maximum norm in time and the continuous maximum norm in space.We discuss the solution of the linear system arising at each time level via the capacitance matrix technique and the package COLROWfor solving almost block diagonal linear systems.We present numerical examples that confirm the theoretical global error estimates and exhibit superconvergence phenomena. 展开更多
关键词 Heat equation nonlocal boundary conditions orthogonal spline collocation Hermite cubic splines convergence analysis SUPERCONVERGENCE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部