This study shows that the mechanical strength of the composite of Fe matrix and titanium carbide(Ti C)ceramic particles is significantly enhanced with addition of molybdenum(Mo) atoms. Ti C reinforced Fe(Fe-0.2C-7Mn) ...This study shows that the mechanical strength of the composite of Fe matrix and titanium carbide(Ti C)ceramic particles is significantly enhanced with addition of molybdenum(Mo) atoms. Ti C reinforced Fe(Fe-0.2C-7Mn) composites with and without Mo were fabricated by a liquid pressing infiltration(LPI)process and the effect of Mo on interfacial properties of TiC–Fe composite was investigated using atomic probe tomography(APT) analysis, molecular dynamics(MD) simulations, first-principle density functional theory(DFT), and thermodynamic calculations. First, DFT calculations showed that total energies of the Mo-doped Ti C–Fe superlattices strongly depend on the position of Mo defects, and are minimized when the Mo atom is located at the TiC/Fe interface, supporting the probable formation of MoC-like interphase at the TiC/Fe interface region. Then, APT analysis confirmed the DFT predictions by finding that about6.5 wt.% Mo is incorporated in the Ti C–Fe(Mo) composite and that sub-micrometer thick(Ti,Mo)C interphase is indeed formed near the interface. The MD simulations show that Mo atoms migrate to the Mo-free TiC–Fe interface at elevated temperatures and the mechanical strength of the interface is considerably enhanced, which is in good agreement with experimental observations.展开更多
The multidisciplinary space environment,encompassing orbital debris,cosmic radiation,and solar radiative heat,poses significant risks to spacecraft and astronauts,necessitating efficient and effective shielding soluti...The multidisciplinary space environment,encompassing orbital debris,cosmic radiation,and solar radiative heat,poses significant risks to spacecraft and astronauts,necessitating efficient and effective shielding solutions.A multi-layer shield with wide spacing has been proven to be an effective way to shield the spacecraft from space debris impact;however,due to the limited volume of the payload fairing,it was not feasible to apply a multi-layer shield to the spacecraft fuselage.Through the origami design,the shield maintains a compact form during launch and subsequently expands in outer space to enhance protection.Through geometric analysis,it has been confirmed that the deployable multi-layer space shield can occupy less space than conventional space shield structures while expanding into wider shield intervals and multiple layers.Through hypervelocity impact experiments,it was confirmed that as the bumper spacing of the multi-layer space shield expands,its ballistic performance becomes superior to conventional space structures.The deployable multi-layer space shield can reduce not only hypervelocity impacts but also solar radiative heat using the same mechanism as multi-layer insulation.Through cosmic radiation dose analysis,it has been confirmed that the multi-layer space shield is effective in cosmic radiation shielding compared to conventional space structures.展开更多
基金financially supported by the Fundamental Research Program (PNK7480) of the Korea Institute of Materials Science (KIMS)the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF2020M3H4A3105943)+1 种基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (NRF2014R1A1A2059123)。
文摘This study shows that the mechanical strength of the composite of Fe matrix and titanium carbide(Ti C)ceramic particles is significantly enhanced with addition of molybdenum(Mo) atoms. Ti C reinforced Fe(Fe-0.2C-7Mn) composites with and without Mo were fabricated by a liquid pressing infiltration(LPI)process and the effect of Mo on interfacial properties of TiC–Fe composite was investigated using atomic probe tomography(APT) analysis, molecular dynamics(MD) simulations, first-principle density functional theory(DFT), and thermodynamic calculations. First, DFT calculations showed that total energies of the Mo-doped Ti C–Fe superlattices strongly depend on the position of Mo defects, and are minimized when the Mo atom is located at the TiC/Fe interface, supporting the probable formation of MoC-like interphase at the TiC/Fe interface region. Then, APT analysis confirmed the DFT predictions by finding that about6.5 wt.% Mo is incorporated in the Ti C–Fe(Mo) composite and that sub-micrometer thick(Ti,Mo)C interphase is indeed formed near the interface. The MD simulations show that Mo atoms migrate to the Mo-free TiC–Fe interface at elevated temperatures and the mechanical strength of the interface is considerably enhanced, which is in good agreement with experimental observations.
基金Supported by the National Research Foundation of South Korea(No.NRF-2021R1A4A1032783)the National Research Foundation of Korea(NRF),the Korea government(MSIT)(No.2022R1C1C1003718).
文摘The multidisciplinary space environment,encompassing orbital debris,cosmic radiation,and solar radiative heat,poses significant risks to spacecraft and astronauts,necessitating efficient and effective shielding solutions.A multi-layer shield with wide spacing has been proven to be an effective way to shield the spacecraft from space debris impact;however,due to the limited volume of the payload fairing,it was not feasible to apply a multi-layer shield to the spacecraft fuselage.Through the origami design,the shield maintains a compact form during launch and subsequently expands in outer space to enhance protection.Through geometric analysis,it has been confirmed that the deployable multi-layer space shield can occupy less space than conventional space shield structures while expanding into wider shield intervals and multiple layers.Through hypervelocity impact experiments,it was confirmed that as the bumper spacing of the multi-layer space shield expands,its ballistic performance becomes superior to conventional space structures.The deployable multi-layer space shield can reduce not only hypervelocity impacts but also solar radiative heat using the same mechanism as multi-layer insulation.Through cosmic radiation dose analysis,it has been confirmed that the multi-layer space shield is effective in cosmic radiation shielding compared to conventional space structures.