This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj...This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.展开更多
Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the inter...Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the interaction effect significant?Early works concluded that the effect of interaction is pronounced for stiff systems;consequently,the straightforward method for estimating seismic response to bidirectional excitation by using unidirectional analyses is verified primarily for short period systems.Hence,it is essential to identify the domain of significance for bidirectional interaction before adopting this simple methodology in design.Several parametrically defined systems with elastoplastic and degrading hysteresis models are studied under near-fault motions,assuming strength-independent and strength-dependent stiffness.The force-based and displacement-based analyses,conducted in parallel,reveal that the interaction effect is considerable for stiff systems,especially with degrading characteristics in a relatively low inelasticity range.However,the bidirectional effect may be significant even for highly flexible systems,especially for residual deformation,which in earlier works was shrouded.The range of significance depends on the hysteresis model,system parameters,and response indices.Regression analysis is carried out with the results of the case studies,and the derived regression models may be used for a preliminary assessment of the impact of interaction in advance.展开更多
A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of sho...A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions.展开更多
In this comprehensive review,the evolution and progress of bioplastics are examined,with an emphasis on their types,production methods,environmental impact,and biodegradability.In light of the increasing global effort...In this comprehensive review,the evolution and progress of bioplastics are examined,with an emphasis on their types,production methods,environmental impact,and biodegradability.In light of the increasing global efforts to address environmental degradation,bioplastics have emerged as a highly potential substitute for conventional petroleum-based plastics.This review classifies various categories of bioplastics,encompassing both biodegradable and bio-based variations,and assesses their environmental consequences using life cycle evaluations and biodegradability calculations.This paper analyzes the technological advancements that have enhanced the mechanical and thermal characteristics of bioplastics,hence increasing their feasibility for extensive commercial applications in diverse sectors.This review critically examines the possible uses of bioplastics in important industries including packaging,aerospace,and healthcare,emphasizing both achievements and current obstacles.In addition,the assessment addresses the economic and technical obstacles to expanding bioplastic manufacturing,namely concerns about cost,material efficiency,and waste disposal.Moreover,the article forecasts the future potential of bioplastics in furthering a sustainable circular economy and suggests methods to address existing constraints,such as improvements in recycling technology and the establishment of more economically efficient manufacturing methods.The findings are intended to educate policymakers,industry stakeholders,and researchers on the crucial contribution of bioplastics in attaining sustainability objectives and promoting innovation in the field of material science.展开更多
Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by ad...Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.展开更多
The growing demand for flexible,lightweight,and highly processable electronic devices makes high-functionality conducting polymers such as poly(3,4-ethylene dioxythiophene):polystyrene sulfonate(PEDOT:PSS)an attractiv...The growing demand for flexible,lightweight,and highly processable electronic devices makes high-functionality conducting polymers such as poly(3,4-ethylene dioxythiophene):polystyrene sulfonate(PEDOT:PSS)an attractive alternative to conventional inorganic materials for various applications including thermoelectrics.However,considerable improvements are necessary to make conducting polymers a commercially viable choice for thermoelectric applications.This study explores nanopatterning as an effective and unique strategy for enhancing polymer functionality to optimize thermoelectric parameters,such as electrical conductivity,Seebeck coefficient,and thermal conductivity.Introducing nanopatterning into thermoelectric polymers is challenging due to intricate technical hurdles and the necessity for individually manipulating the interdependent thermoelectric parameters.Here,array nanopatterns with different pattern spacings are imposed on free-standing PEDOT:PSS films using direct electron beam irradiation,thereby achieving selective control of electrical and thermal transport in PEDOT:PSS.Electron beam irradiation transformed PEDOT:PSS from a highly ordered quinoid to an amorphous benzoid structure.Optimized pattern spacing resulted in a remarkable 70%reduction in thermal conductivity and a 60%increase in thermoelectric figure of merit compared to non-patterned PEDOT:PSS.The proposed nanopatterning methodology demonstrates a skillful approach to precisely manipulate the thermoelectric parameters,thereby improving the thermoelectric performance of conducting polymers,and promising utilization in cutting-edge electronic applications.展开更多
The influence of varying shim layers on the progressive damage/failure of a composite component in a bolted composite-aluminum aerospace structural assembly was investigated using a non-linear three-dimensional(3 D)st...The influence of varying shim layers on the progressive damage/failure of a composite component in a bolted composite-aluminum aerospace structural assembly was investigated using a non-linear three-dimensional(3 D)structural solid elements assembled model of a carbon fiber-reinforced polymer(CFRP)-aluminum single-lap joint with a titanium(Ti-6 Al-4 V)fastener and a washer generated with the commercial finite element(FE)software package,ABAQUS/Standard.A progressive failure algorithm written in Fortran code with a set of appropriate degradation rules was incorporated as a user subroutine in ABAQUS to simulate the non-linear damage behavior of the composite component in the composite-aluminum bolted aerospace structure.The assembled 3 DFE model simulated,as well as the specimen for the experimental testing consisted of a carbon-epoxy IMS-977-2 substrate,aluminum alloy 7075-T651 substrate,liquid shim(Hysol EA 9394),solid peelable fiberglass shim,a titanium fastener,and a washer.In distinction to previous investigations,the influence of shim layers(liquid shim and solid peelable fiberglass shim)inserted in-between the faying surfaces(CFRP and aluminum alloy substrates)were investigated by both numerical simulations and experimental work.The simulated model and test specimens conformed to the standard test configurations for both civil and military standards.The numerical simulations correlated well with the experimental results and it has been found that:(1)The shimming procedure as agreed upon by the aerospace industry for the resolution of assembly gaps in bolted joints for composite materials is the same for a composite-aluminum structure;liquid shim series(0.3,0.5 and 0.7 mm thicknesses)prolonged the service life of the composite component whereas a solid peelable fiberglass shim most definitely had a better influence on the 0.9 assembly gap compared with the liquid shim;(2)The shim layers considerably influenced the structural strength of the composite component by delaying its ultimate failure thereby increasing its service life;and(3)Increasing the shim layer′s thickness led to a significant corresponding effect on the stiffness but with minimal effect on the ultimate load.展开更多
This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft t...This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft technologies focused on three main areas. The first area is related to precise control of the shape of morphing concepts for various flight conditions. The second area is mainly related to the flight dynamics, stability, and control aspects of morphing aircraft. The third area deals mainly with aeroelastic control using morphing concepts either for load alleviation purposes and/or to control the instability boundaries. The design of controllers for morphing aircraft/wings is very challenging due to the large changes that can occur in the structural, aerodynamic, and inertial characteristics. In addition, the type of actuation system and actuation rate/speed can have a significant effect on the design of such controllers. The aerospace community is in strong need of such a critical review especially as morphing aircraft technologies move from fundamental research at a low Technology Readiness Level(TRL) to real-life applications. This critical review aims to identify research gaps and propose future directions. In this paper, research activities/papers are categorized according to the control strategy used. This ranges from simple Proportional Integral Derivative(PID) controllers at one end to complex robust adaptive controllers and deep learning algorithms at the other end. This includes analytical, computational, and experimental studies. In addition, the various dynamic models used and their fidelities are highlighted and discussed.展开更多
Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants ...Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.展开更多
Manned multi-rotor electric Vertical Takeoff and Landing(eVTOL)aircraft is prone to actuator saturation due to its weak yaw control efficiency.To address this inherent problem,a rotor cross-tilt configuration is appli...Manned multi-rotor electric Vertical Takeoff and Landing(eVTOL)aircraft is prone to actuator saturation due to its weak yaw control efficiency.To address this inherent problem,a rotor cross-tilt configuration is applied in this paper,with an optimization method proposed to improve the overall control efficiency of the vehicle.First,a flight dynamics model of a 500-kg manned multi-rotor eVTOL aircraft is established.The accuracy of the co-axial rotor model is verified using a single arm test bench,and the accuracy of the flight dynamics model is verified by the flight test data.Then,an optimization method is designed based on the flight dynamics model to calculate an optimal rotor cross-tilt mounting angle,which not only improves the yaw control efficiency,but also basically maintains the efficiency of other control channels.The ideal rotor cross-tilt mounting angle for the prototype is determined by comprehensively considering the optimal results with different payloads,forward flight speeds,and rotor mounting angle errors.Finally,the feasibility of the rotor cross-tilt mounting angle is proved by analyzing the control derivatives of the flight dynamics model,the test data of a ground three Degree-of-Freedom(3DOF)platform,and the actual flight data of the prototype.The results show that a fixed rotor cross-tilt mounting angle can achieve ideal yaw control effectiveness,improving yaw angle tracking and hold ability,increasing endurance time,and achieving good yaw control performance with different payloads and forward speeds.展开更多
In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a par...In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a parametric formulation is developed.All related disciplines,including structure,aerodynamics,guidance,and control are considered.Minimum total mass,maximum aerodynamic control effectiveness,minimum miss distance,maximum yield stress in all subsystems,controllability and gyroscopic stability constraints are some of objectives/constraints taken into account.The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms.The optimal configurations are evaluated in various aspects.The resulted optimal configurations have met all design objectives and constraints.展开更多
Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement b...Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles.展开更多
This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability...This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability for CO_(2) storage, and compositional simulation of hydrocarbon components. The primary objective was to determine the initial components and behavior of the hydrocarbon system required to optimize the injection of CO_(2) and accompanying impurities, establishing a robust basis for subsequent sequestration efforts in the six wells in the depleted KOKA AA-01 reservoir. The process, simulated using industry software such as ECLIPSE, PVTi, SCAL, and Petrel, included a compositional fluid analysis to confirm the pressure volume temperature(PVT) hydrocarbon phases and components. This involved performing a material balance on the quality of the measured data and matching the initial reservoir pressure with the supplied data source. The compositional PVT analysis adopted the Peng–Robinson equation of state to model fluid flow in porous media and estimate the necessary number of phases and components to describe the system accurately. Results from this investigation indicate that the KOKA AA-01 reservoir is suitable for CO_(2)sequestration. This conclusion is based on the reservoir's good quality, evidenced by an average porosity of 0.21 and permeability of 1 111.0 mD, a measured lithological depth of 9 300 ft, and characteristic reservoir – seal properties correlated from well logs. The study confirmed that volumetric behavior predictions are directly linked to compositional behavior predictions, which are essential during reservoir initialization and data quality checks. Additionally, it highlighted that a safe design for CO_(2) storage relies on accurately representing multiphase behaviour across wide-ranging pressure–temperature–composition conditions.展开更多
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil...Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.展开更多
This study explores the potential of Mg/Carbon Nanotubes/Baghdadite composites as biomaterials for bone regeneration and repair while addressing the obstacles to their clinical application.BAG powder was synthesized u...This study explores the potential of Mg/Carbon Nanotubes/Baghdadite composites as biomaterials for bone regeneration and repair while addressing the obstacles to their clinical application.BAG powder was synthesized using the sol-gel method to ensure a fine distribution within the Mg/CNTs matrix.Mg/1.5 wt.%CNT composites were reinforced with BAG at weight fractions of 0.5,1.0,and 1.5 wt.%using spark plasma sintering at 450℃and 50 MPa after homogenization via ball milling.The cellular bioactivity of these nanocomposites was evaluated using human osteoblast-like cells and adipose-derived mesenchymal stromal cells.The proliferation and attachment of MG-63cells were assessed and visualized using the methylthiazol tetrazolium(MTT)assay and SEM,while AD-MSC differentiation was measured using alkaline phosphatase activity assays.Histograms were also generated to visualize the diameter distributions of particles in SEM images using image processing techniques.The Mg/CNTs/0.5 wt.%BAG composite demonstrated optimal mechanical properties,with compressive strength,yield strength,and fracture strain of 259.75 MPa,180.25 MPa,and 31.65%,respectively.Machine learning models,including CNN,LSTM,and GRU,were employed to predict stress-strain relationships across varying BAG amounts,aiming to accurately model these curves without requiring extensive physical experiments.As shown by contact angle measurements,enhanced hydrophilicity promoted better cell adhesion and proliferation.Furthermore,corrosion resistance improved with a higher BAG content.This study concludes that Mg/CNTs composites reinforced with BAG concentrations below 1.0 wt.%offer promising biodegradable implant materials for orthopedic applications,featuring adequate load-bearing capacity and improved corrosion resistance.展开更多
Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding signific...Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding significantly impacts the final product’s integrity.Processing maps guide efficient process design to minimize defects,but creating them through experimentation alone is challenging due to the wide range of parameters,necessitating a comprehensive computational parametric analysis.In this study,we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders.Uniform lattice parameter sweeps are often used for parametric analysis,but are computationally intensive.We find that non-uniform parameter sweep based on the low discrepancy sequence(LDS)algorithm is ten times more efficient at exploring the design space while accurately capturing the relationship between powder flow dynamics and bed packing density.We introduce a multi-layer perceptron(MLP)model to interpolate parametric causalities within the LDS parameter space.With over 99%accuracy,it effectively captures these causalities while requiring fewer simulations.Finally,we generate processing design maps for machine setups and powder selections for efficient process design.We find that recoating speed has the highest impact on powder processing quality,followed by recoating layer thickness,particle size,and inter-particle friction.展开更多
With rapid advancements in Infra-Red (IR) detection techniques, the range from where the IR-guided missiles are able to lock the target aircraft has increased. To avoid the detection and tracking by modern IR-guided m...With rapid advancements in Infra-Red (IR) detection techniques, the range from where the IR-guided missiles are able to lock the target aircraft has increased. To avoid the detection and tracking by modern IR-guided missiles, the aircraft and helicopters also demand progress in its stealth techniques. Hence, study of Infra-Red Signature Suppression (IRSS) systems in aircraft and helicopters has become vital even in design stage. Optical blocking (masking) is one of the effective IRSS techniques used to block the Line- Of-Sight (LOS) of the hot engine parts of the exhaust geometry. This paper reviews the various patents on IR signature suppression systems based on the optical blocking method or a combination of IRSS techniques. The performance penalties generated due to installation of various IRSS methods in aircraft and helicopters are also discussed.展开更多
Experimental study of synthetic jet produced by pulsed direct current (DC) discharge is presented. High velocity jet is acti- vated electro-thermally by high frequency pulsed DC discharge in small cavity. A cavity o...Experimental study of synthetic jet produced by pulsed direct current (DC) discharge is presented. High velocity jet is acti- vated electro-thermally by high frequency pulsed DC discharge in small cavity. A cavity of 2.38 mm diameter cylinder bounded by circular electrode is made in a ceramic plate and a small orifice of 1.78 mm diameter is drilled in the middle of cavity. High frequency pulsed DC discharge instantaneously heats air in the cavity and produces high velocity jet at the exit of the orifice. Schlieren imaging at high framing rate of 100 kHz reveals the presence of supersonic precursor shock followed by the jet emerg- ing from the orifice. The jet velocity reaches as high as about 300 m/s. Jet with smaller cavity volume produces lesser effect and jet velocity reaches maximum at certain cavity volume with given discharge current and orifice size. As duty time of pulse increases from 5 to 20 μs at fixed frequency of 5 kHz, the jet velocity also increases and becomes nearly constant with further increase in duty time. At fixed duty time of 20 μs, higher frequency pulsing of 10 kHz produces degradation of the jet as the discharge pulse continues. The jet developed in this study is demonstrated to be strong enough to penetrate deep into supersonic boundary layer and to produce a bow shock when the jet is issued into Mach 3 supersonic flow.展开更多
In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Exper- iments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 x 10^6 over an...In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Exper- iments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 x 10^6 over angles of attack from -8° to 20% and then results are compared. Gener- ally, it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge. In addition, it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil. In this case, the stall angle drops about 10^6 and the maximum lift coefficient reduces about 50% which is hazardous for an airplane. While horn ice leads to a stall angle drop of about 4°and a maximum lift coefficient reduction to 21%, runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2% and the maximum lift reduces about 8%.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.
文摘Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the interaction effect significant?Early works concluded that the effect of interaction is pronounced for stiff systems;consequently,the straightforward method for estimating seismic response to bidirectional excitation by using unidirectional analyses is verified primarily for short period systems.Hence,it is essential to identify the domain of significance for bidirectional interaction before adopting this simple methodology in design.Several parametrically defined systems with elastoplastic and degrading hysteresis models are studied under near-fault motions,assuming strength-independent and strength-dependent stiffness.The force-based and displacement-based analyses,conducted in parallel,reveal that the interaction effect is considerable for stiff systems,especially with degrading characteristics in a relatively low inelasticity range.However,the bidirectional effect may be significant even for highly flexible systems,especially for residual deformation,which in earlier works was shrouded.The range of significance depends on the hysteresis model,system parameters,and response indices.Regression analysis is carried out with the results of the case studies,and the derived regression models may be used for a preliminary assessment of the impact of interaction in advance.
文摘A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions.
基金the financial support given by the Ministry of Higher Education Malaysia(MOHE)under the Higher Institution Centre of Excellence(HICOE2.0/5210004)at the Institute of Tropical Forestry and Forest Products.
文摘In this comprehensive review,the evolution and progress of bioplastics are examined,with an emphasis on their types,production methods,environmental impact,and biodegradability.In light of the increasing global efforts to address environmental degradation,bioplastics have emerged as a highly potential substitute for conventional petroleum-based plastics.This review classifies various categories of bioplastics,encompassing both biodegradable and bio-based variations,and assesses their environmental consequences using life cycle evaluations and biodegradability calculations.This paper analyzes the technological advancements that have enhanced the mechanical and thermal characteristics of bioplastics,hence increasing their feasibility for extensive commercial applications in diverse sectors.This review critically examines the possible uses of bioplastics in important industries including packaging,aerospace,and healthcare,emphasizing both achievements and current obstacles.In addition,the assessment addresses the economic and technical obstacles to expanding bioplastic manufacturing,namely concerns about cost,material efficiency,and waste disposal.Moreover,the article forecasts the future potential of bioplastics in furthering a sustainable circular economy and suggests methods to address existing constraints,such as improvements in recycling technology and the establishment of more economically efficient manufacturing methods.The findings are intended to educate policymakers,industry stakeholders,and researchers on the crucial contribution of bioplastics in attaining sustainability objectives and promoting innovation in the field of material science.
基金financially supported by the Scientific Research Project Coordinatorship (BAP) of Yildiz Technical University (YTU) (Project No: FYL-2021-3825)。
文摘Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.
基金supported by Characterization of Mechanical/Thermal/Chemical Properties of EUV Absorption/Transmission Materials through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Grant 2020-M3H4A3081882)by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Trade,Industry and Energy(MOTIE)(No.2021202080023D)the Characterization Platform for Advanced Materials(KRISS-2022-GP2022-0013)funded by the Korea Research Institute of Standards and Science。
文摘The growing demand for flexible,lightweight,and highly processable electronic devices makes high-functionality conducting polymers such as poly(3,4-ethylene dioxythiophene):polystyrene sulfonate(PEDOT:PSS)an attractive alternative to conventional inorganic materials for various applications including thermoelectrics.However,considerable improvements are necessary to make conducting polymers a commercially viable choice for thermoelectric applications.This study explores nanopatterning as an effective and unique strategy for enhancing polymer functionality to optimize thermoelectric parameters,such as electrical conductivity,Seebeck coefficient,and thermal conductivity.Introducing nanopatterning into thermoelectric polymers is challenging due to intricate technical hurdles and the necessity for individually manipulating the interdependent thermoelectric parameters.Here,array nanopatterns with different pattern spacings are imposed on free-standing PEDOT:PSS films using direct electron beam irradiation,thereby achieving selective control of electrical and thermal transport in PEDOT:PSS.Electron beam irradiation transformed PEDOT:PSS from a highly ordered quinoid to an amorphous benzoid structure.Optimized pattern spacing resulted in a remarkable 70%reduction in thermal conductivity and a 60%increase in thermoelectric figure of merit compared to non-patterned PEDOT:PSS.The proposed nanopatterning methodology demonstrates a skillful approach to precisely manipulate the thermoelectric parameters,thereby improving the thermoelectric performance of conducting polymers,and promising utilization in cutting-edge electronic applications.
基金the Innovation Foundation of National Research Center for Commercial Aircraft Manufacturing Engineering Technology in China (No. SAMC13-JS-13-021)Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology for the provision of financial support
文摘The influence of varying shim layers on the progressive damage/failure of a composite component in a bolted composite-aluminum aerospace structural assembly was investigated using a non-linear three-dimensional(3 D)structural solid elements assembled model of a carbon fiber-reinforced polymer(CFRP)-aluminum single-lap joint with a titanium(Ti-6 Al-4 V)fastener and a washer generated with the commercial finite element(FE)software package,ABAQUS/Standard.A progressive failure algorithm written in Fortran code with a set of appropriate degradation rules was incorporated as a user subroutine in ABAQUS to simulate the non-linear damage behavior of the composite component in the composite-aluminum bolted aerospace structure.The assembled 3 DFE model simulated,as well as the specimen for the experimental testing consisted of a carbon-epoxy IMS-977-2 substrate,aluminum alloy 7075-T651 substrate,liquid shim(Hysol EA 9394),solid peelable fiberglass shim,a titanium fastener,and a washer.In distinction to previous investigations,the influence of shim layers(liquid shim and solid peelable fiberglass shim)inserted in-between the faying surfaces(CFRP and aluminum alloy substrates)were investigated by both numerical simulations and experimental work.The simulated model and test specimens conformed to the standard test configurations for both civil and military standards.The numerical simulations correlated well with the experimental results and it has been found that:(1)The shimming procedure as agreed upon by the aerospace industry for the resolution of assembly gaps in bolted joints for composite materials is the same for a composite-aluminum structure;liquid shim series(0.3,0.5 and 0.7 mm thicknesses)prolonged the service life of the composite component whereas a solid peelable fiberglass shim most definitely had a better influence on the 0.9 assembly gap compared with the liquid shim;(2)The shim layers considerably influenced the structural strength of the composite component by delaying its ultimate failure thereby increasing its service life;and(3)Increasing the shim layer′s thickness led to a significant corresponding effect on the stiffness but with minimal effect on the ultimate load.
基金funded by Abu Dhabi Education Council Award for Research Excellence Program (AARE 2019) _(No. AARE19-213)by Khalifa University of Science and Technology through Faculty Start-up Award (No. FSU-2020-20)。
文摘This paper reviews the various control algorithms and strategies used for fixed-wing morphing aircraft applications. It is evident from the literature that the development of control algorithms for morphing aircraft technologies focused on three main areas. The first area is related to precise control of the shape of morphing concepts for various flight conditions. The second area is mainly related to the flight dynamics, stability, and control aspects of morphing aircraft. The third area deals mainly with aeroelastic control using morphing concepts either for load alleviation purposes and/or to control the instability boundaries. The design of controllers for morphing aircraft/wings is very challenging due to the large changes that can occur in the structural, aerodynamic, and inertial characteristics. In addition, the type of actuation system and actuation rate/speed can have a significant effect on the design of such controllers. The aerospace community is in strong need of such a critical review especially as morphing aircraft technologies move from fundamental research at a low Technology Readiness Level(TRL) to real-life applications. This critical review aims to identify research gaps and propose future directions. In this paper, research activities/papers are categorized according to the control strategy used. This ranges from simple Proportional Integral Derivative(PID) controllers at one end to complex robust adaptive controllers and deep learning algorithms at the other end. This includes analytical, computational, and experimental studies. In addition, the various dynamic models used and their fidelities are highlighted and discussed.
基金the Hindustan Institute of Technology and Science for their support.
文摘Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.
基金co-supported by the National Natural Science Foundation of China(Nos.12202406,11672128)。
文摘Manned multi-rotor electric Vertical Takeoff and Landing(eVTOL)aircraft is prone to actuator saturation due to its weak yaw control efficiency.To address this inherent problem,a rotor cross-tilt configuration is applied in this paper,with an optimization method proposed to improve the overall control efficiency of the vehicle.First,a flight dynamics model of a 500-kg manned multi-rotor eVTOL aircraft is established.The accuracy of the co-axial rotor model is verified using a single arm test bench,and the accuracy of the flight dynamics model is verified by the flight test data.Then,an optimization method is designed based on the flight dynamics model to calculate an optimal rotor cross-tilt mounting angle,which not only improves the yaw control efficiency,but also basically maintains the efficiency of other control channels.The ideal rotor cross-tilt mounting angle for the prototype is determined by comprehensively considering the optimal results with different payloads,forward flight speeds,and rotor mounting angle errors.Finally,the feasibility of the rotor cross-tilt mounting angle is proved by analyzing the control derivatives of the flight dynamics model,the test data of a ground three Degree-of-Freedom(3DOF)platform,and the actual flight data of the prototype.The results show that a fixed rotor cross-tilt mounting angle can achieve ideal yaw control effectiveness,improving yaw angle tracking and hold ability,increasing endurance time,and achieving good yaw control performance with different payloads and forward speeds.
文摘In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a parametric formulation is developed.All related disciplines,including structure,aerodynamics,guidance,and control are considered.Minimum total mass,maximum aerodynamic control effectiveness,minimum miss distance,maximum yield stress in all subsystems,controllability and gyroscopic stability constraints are some of objectives/constraints taken into account.The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms.The optimal configurations are evaluated in various aspects.The resulted optimal configurations have met all design objectives and constraints.
文摘Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles.
文摘This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability for CO_(2) storage, and compositional simulation of hydrocarbon components. The primary objective was to determine the initial components and behavior of the hydrocarbon system required to optimize the injection of CO_(2) and accompanying impurities, establishing a robust basis for subsequent sequestration efforts in the six wells in the depleted KOKA AA-01 reservoir. The process, simulated using industry software such as ECLIPSE, PVTi, SCAL, and Petrel, included a compositional fluid analysis to confirm the pressure volume temperature(PVT) hydrocarbon phases and components. This involved performing a material balance on the quality of the measured data and matching the initial reservoir pressure with the supplied data source. The compositional PVT analysis adopted the Peng–Robinson equation of state to model fluid flow in porous media and estimate the necessary number of phases and components to describe the system accurately. Results from this investigation indicate that the KOKA AA-01 reservoir is suitable for CO_(2)sequestration. This conclusion is based on the reservoir's good quality, evidenced by an average porosity of 0.21 and permeability of 1 111.0 mD, a measured lithological depth of 9 300 ft, and characteristic reservoir – seal properties correlated from well logs. The study confirmed that volumetric behavior predictions are directly linked to compositional behavior predictions, which are essential during reservoir initialization and data quality checks. Additionally, it highlighted that a safe design for CO_(2) storage relies on accurately representing multiphase behaviour across wide-ranging pressure–temperature–composition conditions.
基金supported by the National Natural Science Foundation of China(No.12102256).
文摘Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.
文摘This study explores the potential of Mg/Carbon Nanotubes/Baghdadite composites as biomaterials for bone regeneration and repair while addressing the obstacles to their clinical application.BAG powder was synthesized using the sol-gel method to ensure a fine distribution within the Mg/CNTs matrix.Mg/1.5 wt.%CNT composites were reinforced with BAG at weight fractions of 0.5,1.0,and 1.5 wt.%using spark plasma sintering at 450℃and 50 MPa after homogenization via ball milling.The cellular bioactivity of these nanocomposites was evaluated using human osteoblast-like cells and adipose-derived mesenchymal stromal cells.The proliferation and attachment of MG-63cells were assessed and visualized using the methylthiazol tetrazolium(MTT)assay and SEM,while AD-MSC differentiation was measured using alkaline phosphatase activity assays.Histograms were also generated to visualize the diameter distributions of particles in SEM images using image processing techniques.The Mg/CNTs/0.5 wt.%BAG composite demonstrated optimal mechanical properties,with compressive strength,yield strength,and fracture strain of 259.75 MPa,180.25 MPa,and 31.65%,respectively.Machine learning models,including CNN,LSTM,and GRU,were employed to predict stress-strain relationships across varying BAG amounts,aiming to accurately model these curves without requiring extensive physical experiments.As shown by contact angle measurements,enhanced hydrophilicity promoted better cell adhesion and proliferation.Furthermore,corrosion resistance improved with a higher BAG content.This study concludes that Mg/CNTs composites reinforced with BAG concentrations below 1.0 wt.%offer promising biodegradable implant materials for orthopedic applications,featuring adequate load-bearing capacity and improved corrosion resistance.
基金supported by the funding provided by Boeing Center for Aviation and Aerospace Safety.
文摘Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding significantly impacts the final product’s integrity.Processing maps guide efficient process design to minimize defects,but creating them through experimentation alone is challenging due to the wide range of parameters,necessitating a comprehensive computational parametric analysis.In this study,we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders.Uniform lattice parameter sweeps are often used for parametric analysis,but are computationally intensive.We find that non-uniform parameter sweep based on the low discrepancy sequence(LDS)algorithm is ten times more efficient at exploring the design space while accurately capturing the relationship between powder flow dynamics and bed packing density.We introduce a multi-layer perceptron(MLP)model to interpolate parametric causalities within the LDS parameter space.With over 99%accuracy,it effectively captures these causalities while requiring fewer simulations.Finally,we generate processing design maps for machine setups and powder selections for efficient process design.We find that recoating speed has the highest impact on powder processing quality,followed by recoating layer thickness,particle size,and inter-particle friction.
基金the Indian Institute of Technology Bombay’s Post-Doctoral Research Program, vide appointment no. AO/Admn1/33/2018 dated 10.Aug’2018 for providing funding
文摘With rapid advancements in Infra-Red (IR) detection techniques, the range from where the IR-guided missiles are able to lock the target aircraft has increased. To avoid the detection and tracking by modern IR-guided missiles, the aircraft and helicopters also demand progress in its stealth techniques. Hence, study of Infra-Red Signature Suppression (IRSS) systems in aircraft and helicopters has become vital even in design stage. Optical blocking (masking) is one of the effective IRSS techniques used to block the Line- Of-Sight (LOS) of the hot engine parts of the exhaust geometry. This paper reviews the various patents on IR signature suppression systems based on the optical blocking method or a combination of IRSS techniques. The performance penalties generated due to installation of various IRSS methods in aircraft and helicopters are also discussed.
文摘Experimental study of synthetic jet produced by pulsed direct current (DC) discharge is presented. High velocity jet is acti- vated electro-thermally by high frequency pulsed DC discharge in small cavity. A cavity of 2.38 mm diameter cylinder bounded by circular electrode is made in a ceramic plate and a small orifice of 1.78 mm diameter is drilled in the middle of cavity. High frequency pulsed DC discharge instantaneously heats air in the cavity and produces high velocity jet at the exit of the orifice. Schlieren imaging at high framing rate of 100 kHz reveals the presence of supersonic precursor shock followed by the jet emerg- ing from the orifice. The jet velocity reaches as high as about 300 m/s. Jet with smaller cavity volume produces lesser effect and jet velocity reaches maximum at certain cavity volume with given discharge current and orifice size. As duty time of pulse increases from 5 to 20 μs at fixed frequency of 5 kHz, the jet velocity also increases and becomes nearly constant with further increase in duty time. At fixed duty time of 20 μs, higher frequency pulsing of 10 kHz produces degradation of the jet as the discharge pulse continues. The jet developed in this study is demonstrated to be strong enough to penetrate deep into supersonic boundary layer and to produce a bow shock when the jet is issued into Mach 3 supersonic flow.
文摘In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Exper- iments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 x 10^6 over angles of attack from -8° to 20% and then results are compared. Gener- ally, it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge. In addition, it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil. In this case, the stall angle drops about 10^6 and the maximum lift coefficient reduces about 50% which is hazardous for an airplane. While horn ice leads to a stall angle drop of about 4°and a maximum lift coefficient reduction to 21%, runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2% and the maximum lift reduces about 8%.