THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to pos...THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real environments.In this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5].展开更多
Polyelectrolyte(PE)gels,distinguished by their unique stimuli-responsive swelling behavior,serve as the basis of broad applications,such as artificial muscles and drug delivery.In this work,we present a theoretical mo...Polyelectrolyte(PE)gels,distinguished by their unique stimuli-responsive swelling behavior,serve as the basis of broad applications,such as artificial muscles and drug delivery.In this work,we present a theoretical model to analyze the electrostatics and its contribution to the swelling behavior of PE gels in salt solutions.By minimizing the free energy of PE gels,we obtain two distinct scaling regimes for the swelling ratio at equilibrium with respect to the salt concentration.We compare our predictions for the swelling ratio with experimental measurements,which show excellent agreement.In addition,we employ a finite element method to assess the applicability range of our theoretical model and assumptions.We anticipate that our model will also provide valuable insights into drug adsorption and release,deformation of red blood cells,4D printing and soft robotics,where the underlying mechanism of swelling remains enigmatic.展开更多
The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of ...The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we p...As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we present a comprehensive survey of cooperation issues,one of the key components of UMRS,from the perspective of the emergence of new functions.More specifically,we categorize the cooperation in terms of task-space,motion-space,measurement-space,as well as their combination.Further,we analyze the architecture of UMRS from three aspects,i.e.,the performance of the individual underwater robot,the new functions of underwater robots,and the technical approaches of MRS.To conclude,we have discussed related promising directions for future research.This survey provides valuable insight into the reasonable utilization of UMRS to attain diverse underwater tasks in complex ocean application scenarios.展开更多
Dear Editor,Quadratic programming problems(QPs)receive a lot of attention in various fields of science computing and engineering applications,such as manipulator control[1].Recursive neural network(RNN)is considered t...Dear Editor,Quadratic programming problems(QPs)receive a lot of attention in various fields of science computing and engineering applications,such as manipulator control[1].Recursive neural network(RNN)is considered to be a powerful QPs solver due to its parallel processing capability and feasibility of hardware implementation[2].展开更多
Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the s...Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.展开更多
The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study sel...The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study selected polycaprolactone blended with carboxymethylcellulose that is the additive.The ratios of them were derived from mixture design in Minitab program that was 98/2(P1),93.5/6.5(P2),89/11(P3),84.5/15.5(P4),and 80/20(P5),respectively.The scanning electron microscopy(SEM)was applied to assess the physical properties and the pore size dimension of the scaffold from SEM micrographs.The results of SEM present the scaffolds happened interconnected porous structures that are found in all of the P1-P5 samples.The pore size dimension of all sample scaffolds is in the range of 264.11-348.28μm.Whereas the largest and the smallest of pore size are the sample of P3 and P2,respectively,while the porosity ranges from 98.06%-98.88%that the sample of P5 is the greatest and the sample of P4 is the slightly lowest.In conclusion,the blended PCL/CMC scaffolds P1-P5 were formed by salt leaching technique suitable to use in tissue engineering application.However,the amount of CMC blended with PCL should be reasonable in order to adjust the hydrophilic of the scaffold.展开更多
The harmonic drive is a kind of gear transmission that uses wave generator to produce controllable soft round elastic deformation and engages with rigid gear to transmit motion and power. The load distribution on the ...The harmonic drive is a kind of gear transmission that uses wave generator to produce controllable soft round elastic deformation and engages with rigid gear to transmit motion and power. The load distribution on the surface of the flexible gear and wave generator is an important parameter of studying the deformation of flexible gear and flexible bearing outside the wave generator and is also a necessary condition for studying the fatigue damage of flexible gear under alternating load. In this paper, a 3D model of 32-type 80:1 harmonic drive is build. Based on the generalized Hooke law, a hypothesis of load distribution which is proved to be validity by using finite element simulation is proposed on the interface of flexible gear and wave generator. On this base, the mathematic model and the quantitative calculation formula of the load distribution on the surface of the flexible gear and wave generator are proposed which provide a basis for the dynamic analysis and the fatigue damage of harmonic gear drive.展开更多
Instability-induced wrinkle patterns of thin sheets are ubiquitous in nature,which often result in origami-like patterns that provide inspiration for the engineering of origami designs.Inspired by instability-induced ...Instability-induced wrinkle patterns of thin sheets are ubiquitous in nature,which often result in origami-like patterns that provide inspiration for the engineering of origami designs.Inspired by instability-induced origami patterns,we propose a computational origami design method based on the nonlinear analysis of loaded thin sheets and topology optimization.The bar-and-hinge model is employed for the nonlinear structural analysis,added with a displacement perturbation strategy to initiate out-of-plane buckling.Borrowing ideas from topology optimization,a continuous crease indicator is introduced as the design variable to indicate the state of a crease,which is penalized by power functions to establish the mapping relationships between the crease indicator and hinge properties.Minimizing the structural strain energy with a crease length constraint,we are able to evolve a thin sheet into an origami structure with an optimized crease pattern.Two examples with different initial setups are illustrated,demonstrating the effectiveness and feasibility of the method.展开更多
The game of Tibetan Go faces the scarcity of expert knowledge and research literature.Therefore,we study the zero learning model of Tibetan Go under limited computing power resources and propose a novel scaleinvariant...The game of Tibetan Go faces the scarcity of expert knowledge and research literature.Therefore,we study the zero learning model of Tibetan Go under limited computing power resources and propose a novel scaleinvariant U-Net style two-headed output lightweight network TibetanGoTinyNet.The lightweight convolutional neural networks and capsule structure are applied to the encoder and decoder of TibetanGoTinyNet to reduce computational burden and achieve better feature extraction results.Several autonomous self-attention mechanisms are integrated into TibetanGoTinyNet to capture the Tibetan Go board’s spatial and global information and select important channels.The training data are generated entirely from self-play games.TibetanGoTinyNet achieves 62%–78%winning rate against other four U-Net style models including Res-UNet,Res-UNet Attention,Ghost-UNet,and Ghost Capsule-UNet.It also achieves 75%winning rate in the ablation experiments on the attention mechanism with embedded positional information.The model saves about 33%of the training time with 45%–50%winning rate for different Monte–Carlo tree search(MCTS)simulation counts when migrated from 9×9 to 11×11 boards.Code for our model is available at https://github.com/paulzyy/TibetanGoTinyNet.展开更多
The existing fixed gait lower limb rehabilitation robots perform a predetermined walking trajectory for patients,ignoring their residual muscle strength.To enhance patient participation and safety in training,this pap...The existing fixed gait lower limb rehabilitation robots perform a predetermined walking trajectory for patients,ignoring their residual muscle strength.To enhance patient participation and safety in training,this paper aims to develop a lower limb rehabilitation robot with adaptive gait training capability relying on human–robot interaction force measurement.Firstly,a novel lower limb rehabilitation robot system with several active and passive driven joints is developed,and 2 face-to-face mounted cantilever beam force sensors are employed to measure the human–robot interaction forces.Secondly,a dynamic model of the rehabilitation training robot is constructed to estimate the driven forces of the human lower leg in a completely passive state.Thereafter,based on the theoretical moment from the dynamics and the actual joint interaction force collected by the sensors,an adaptive gait adjustment method is proposed to achieve the goal of adapting to the wearer’s movement intention.Finally,interactive experiments are carried out to validate the effectiveness of the developed rehabilitation training robot system.The proposed rehabilitation training robot system with adaptive gaits offers great potential for future highquality rehabilitation training,e.g.,improving participation and safety.展开更多
Disordered hyperuniformity(DHU)is a recently discovered novel state of amorphous systems characterized by strongly suppressed density fluctuations at large length scales as in crystalline materials,which offers great ...Disordered hyperuniformity(DHU)is a recently discovered novel state of amorphous systems characterized by strongly suppressed density fluctuations at large length scales as in crystalline materials,which offers great potential for achieving unusual mechanical,electronic,and photonic properties.However,despite the fundamental and technological importance of thermal transport in amorphous solids,the effect of DHU remains largely unexplored.Here,we theoretically study thermal transport in a class of two-dimensional DHU materials—monolayer amorphous carbon(MAC).Beginning with a perfect graphene lattice,we continuously apply Stone-Wales transformations to generate a series of MAC models with varied degrees of disorder and defects,which are quantified through comprehensive structural analysis including the so-called hyperuniformity index(H),where a smaller H indicates a higher degree of hyperuniformity.Subsequently,we conduct molecular dynamics simulations to obtain the thermal conductivity(κ).A significant correlation between the thermal transport behavior and degree of hyperuniformity is observed,with the room-temperatureκdecreasing from 26.3 to 5.3 W m^(-1)K^(-1)while H is tuned from 0.0004 to 0.024.Remarkably,two distinct transport regimes are identified,including a nearly-DHU regime at small H(<0.005)whereκdrops sharply and a non-DHU region at larger H whereκbecomes relatively flat.Mode-resolved analysis reveals longer lifetime and higher participation ratio for the heat carriers in nearly-DHU MAC,implying that the hidden long-range correlations could support extended modes that enhance transport.Our work highlights the impact of DHU on the thermal properties of amorphous materials and represents a conceptual advancement that is worthy of future exploration.展开更多
Few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated data.The transfer learning-based solution becomes popular due to its simple training with good a...Few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated data.The transfer learning-based solution becomes popular due to its simple training with good accuracy,however,it is still challenging to enrich the feature diversity during the training process.And fine-grained features are also insufficient for novel class detection.To deal with the problems,this paper proposes a novel few-shot object detection method based on dual-domain feature fusion and patch-level attention.Upon original base domain,an elementary domain with more category-agnostic features is superposed to construct a two-stream backbone,which benefits to enrich the feature diversity.To better integrate various features,a dual-domain feature fusion is designed,where the feature pairs with the same size are complementarily fused to extract more discriminative features.Moreover,a patch-wise feature refinement termed as patch-level attention is presented to mine internal relations among the patches,which enhances the adaptability to novel classes.In addition,a weighted classification loss is given to assist the fine-tuning of the classifier by combining extra features from FPN of the base training model.In this way,the few-shot detection quality to novel class objects is improved.Experiments on PASCAL VOC and MS COCO datasets verify the effectiveness of the method.展开更多
The task of path planning in amphibious environments requires additional consideration due to the complexity of the amphibious environments.This paper presents a path planning method for an amphibious robot named\Amph...The task of path planning in amphibious environments requires additional consideration due to the complexity of the amphibious environments.This paper presents a path planning method for an amphibious robot named\AmphiRobot"with its dynamic constraints considered.First,an explicit dynamic model using Kane's method is presented.The hydrodynamic parameters are obtained through computational°uid dynamics simulations.Furthermore,a path planning method based on a hybrid¯reworks algorithm is proposed,combining the¯reworks algorithm and bare bones¯reworks algorithm,aiming at the amphibious robot's characteristics of multiple motion modes and working environments.The initially planned path is then smoothed using Dubins path under constraints determined by the dynamic model.Simulation reveals that the performance of the hybrid¯reworks algorithm approach is better than the¯reworks algorithm and bare bones¯reworks algorithm is applied separately in the amphibious environment scenarios.展开更多
Soft structural textiles,or softgoods,are used within the space industry for inflatable habitats,parachutes and decelerator systems.Evaluating the safety and structural integrity of these systems occurs through struct...Soft structural textiles,or softgoods,are used within the space industry for inflatable habitats,parachutes and decelerator systems.Evaluating the safety and structural integrity of these systems occurs through structural health monitoring systems(SHM),which integrate non-invasive/non-destructive testing methods to detect,diagnose,and locate damage.Strain/load monitoring of these systems is limited while utilizing traditional strain gauges as these gauges are typically stiff,operate at low temperatures,and fail when subjected to high strain that is a result of high loading classifying them as unsuitable for SHM of soft structural textiles.For this work,a capacitance based strain gauge(CSG)was fabricated via aerosol jet printing(AJP)using silver nanoparticle ink on a flexible polymer substrate.Printed strain gauges were then compared to a commercially available high elongation resistance-based strain gauge(HE-RSG)for their ability to monitor strained Kevlar straps having a 26.7 kN(6 klbf)load.Dynamic,static and cyclic loads were used to characterize both types of strain monitoring devices.Printed CSGs demonstrated superior performance for high elongation strain measurements when compared to commonly used HE-RSGs,and were observed to operate with a gauge factor of 5.2 when the electrode arrangement was perpendicular to the direction of strain.展开更多
Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usuall...Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usually transmit the high-level feature in the encoder to the decoder,and low-level features are neglected.It is noted that low-level features contain abundant detail information,and how to fully exploit low-level features remains unsolved.Meanwhile,the channel information in high-level feature is also not well mined.Inevitably,the performance of grasp detection is degraded.To solve these problems,we propose a grasp detection network with hierarchical multi-scale feature fusion and inverted shuffle residual.Both low-level and high-level features in the encoder are firstly fused by the designed skip connections with attention module,and the fused information is then propagated to corresponding layers of the decoder for in-depth feature fusion.Such a hierarchical fusion guarantees the quality of grasp prediction.Furthermore,an inverted shuffle residual module is created,where the high-level feature from encoder is split in channel and the resultant split features are processed in their respective branches.By such differentiation processing,more high-dimensional channel information is kept,which enhances the representation ability of the network.Besides,an information enhancement module is added before the encoder to reinforce input information.The proposed method attains 98.9%and 97.8%in image-wise and object-wise accuracy on the Cornell grasping dataset,respectively,and the experimental results verify the effectiveness of the method.展开更多
For complex functions to emerge in artificial systems,it is important to understand the intrinsic mechanisms of biological swarm behaviors in nature.In this paper,we present a comprehensive survey of pursuit–evasion,...For complex functions to emerge in artificial systems,it is important to understand the intrinsic mechanisms of biological swarm behaviors in nature.In this paper,we present a comprehensive survey of pursuit–evasion,which is a critical problem in biological groups.First,we review the problem of pursuit–evasion from three different perspectives:game theory,control theory and artificial intelligence,and bio-inspired perspectives.Then we provide an overview of the research on pursuit–evasion problems in biological systems and artificial systems.We summarize predator pursuit behavior and prey evasion behavior as predator–prey behavior.Next,we analyze the application of pursuit–evasion in artificial systems from three perspectives,i.e.,strong pursuer group vs.weak evader group,weak pursuer group vs.strong evader group,and equal-ability group.Finally,relevant prospects for future pursuit–evasion challenges are discussed.This survey provides new insights into the design of multi-agent and multi-robot systems to complete complex hunting tasks in uncertain dynamic scenarios.展开更多
To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,...To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,allowing high-speed and high-precision object detection.Specifically,the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection.With the purpose of further improvement on the detection accuracy,YOLOv4 is transformed into a four-scale detection method.To improve the detection speed,model pruning is applied to the new model.By virtue of the improved detection methods,the robot can collect garbage autonomously.The detection speed is up to 66.67 frames/s with a mean average precision(mAP)of 95.099%,and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.展开更多
This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems(RAP)where the objective functions are generally convex.With the...This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems(RAP)where the objective functions are generally convex.With the help of projection operators,a primal-dual framework,and Nesterov's accelerated method,we first design a distributed accelerated primal-dual projection neurodynamic approach(DAPDP),and its convergence rate of the primal-dual gap is O(1/(t^(2)))by selecting appropriate parameters and initial values.Then,when the local closed convex sets are convex inequalities which have no closed-form solutions of their projection operators,we further propose a distributed accelerated penalty primal-dual neurodynamic approach(DAPPD)on the strength of the penalty method,primal-dual framework,and Nesterov's accelerated method.Based on the above analysis,we prove that DAPPD also has a convergence rate O(1/(t^(2)))of the primal-dual gap.Compared with the distributed dynamical approaches based on the classical primal-dual framework,our proposed distributed accelerated neurodynamic approaches have faster convergence rates.Numerical simulations demonstrate that our proposed neurodynamic approaches are feasible and effective.展开更多
基金supported by the National Natural Science Foundation of China(62302047,62203250)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1).
文摘THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real environments.In this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5].
基金supported by the National Natural Science Foundation of China(No.12372259).
文摘Polyelectrolyte(PE)gels,distinguished by their unique stimuli-responsive swelling behavior,serve as the basis of broad applications,such as artificial muscles and drug delivery.In this work,we present a theoretical model to analyze the electrostatics and its contribution to the swelling behavior of PE gels in salt solutions.By minimizing the free energy of PE gels,we obtain two distinct scaling regimes for the swelling ratio at equilibrium with respect to the salt concentration.We compare our predictions for the swelling ratio with experimental measurements,which show excellent agreement.In addition,we employ a finite element method to assess the applicability range of our theoretical model and assumptions.We anticipate that our model will also provide valuable insights into drug adsorption and release,deformation of red blood cells,4D printing and soft robotics,where the underlying mechanism of swelling remains enigmatic.
基金supported by grants funded by Department of Mechanical Engineering,Faculty of Engineering,Chiang Mai University and the Graduate School of Chiang Mai University.
文摘The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
基金This work was supported in part by the National Natural Science Foundation of China(U1909206,61725305,61903007,62073196)in part by the S&T Program of Hebei(F2020203037).
文摘As a cross-cutting field between ocean development and multi-robot system(MRS),the underwater multi-robot system(UMRS)has gained increasing attention from researchers and engineers in recent decades.In this paper,we present a comprehensive survey of cooperation issues,one of the key components of UMRS,from the perspective of the emergence of new functions.More specifically,we categorize the cooperation in terms of task-space,motion-space,measurement-space,as well as their combination.Further,we analyze the architecture of UMRS from three aspects,i.e.,the performance of the individual underwater robot,the new functions of underwater robots,and the technical approaches of MRS.To conclude,we have discussed related promising directions for future research.This survey provides valuable insight into the reasonable utilization of UMRS to attain diverse underwater tasks in complex ocean application scenarios.
基金supported in part by the National Natural Science Foundation of China(61873304,62173048,62106023)the Key Science and Technology Projects of Jilin Province,China(20210201106GX)+2 种基金the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)the Changchun Science and Technology Project(21ZY41)Beijing Natural Science Foundation(2022MQ05)。
文摘Dear Editor,Quadratic programming problems(QPs)receive a lot of attention in various fields of science computing and engineering applications,such as manipulator control[1].Recursive neural network(RNN)is considered to be a powerful QPs solver due to its parallel processing capability and feasibility of hardware implementation[2].
文摘Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.
文摘The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study selected polycaprolactone blended with carboxymethylcellulose that is the additive.The ratios of them were derived from mixture design in Minitab program that was 98/2(P1),93.5/6.5(P2),89/11(P3),84.5/15.5(P4),and 80/20(P5),respectively.The scanning electron microscopy(SEM)was applied to assess the physical properties and the pore size dimension of the scaffold from SEM micrographs.The results of SEM present the scaffolds happened interconnected porous structures that are found in all of the P1-P5 samples.The pore size dimension of all sample scaffolds is in the range of 264.11-348.28μm.Whereas the largest and the smallest of pore size are the sample of P3 and P2,respectively,while the porosity ranges from 98.06%-98.88%that the sample of P5 is the greatest and the sample of P4 is the slightly lowest.In conclusion,the blended PCL/CMC scaffolds P1-P5 were formed by salt leaching technique suitable to use in tissue engineering application.However,the amount of CMC blended with PCL should be reasonable in order to adjust the hydrophilic of the scaffold.
文摘The harmonic drive is a kind of gear transmission that uses wave generator to produce controllable soft round elastic deformation and engages with rigid gear to transmit motion and power. The load distribution on the surface of the flexible gear and wave generator is an important parameter of studying the deformation of flexible gear and flexible bearing outside the wave generator and is also a necessary condition for studying the fatigue damage of flexible gear under alternating load. In this paper, a 3D model of 32-type 80:1 harmonic drive is build. Based on the generalized Hooke law, a hypothesis of load distribution which is proved to be validity by using finite element simulation is proposed on the interface of flexible gear and wave generator. On this base, the mathematic model and the quantitative calculation formula of the load distribution on the surface of the flexible gear and wave generator are proposed which provide a basis for the dynamic analysis and the fatigue damage of harmonic gear drive.
基金National Key Research and Development Program of China(2020YFE0204200,2022YFB4701900)National Natural Science Foundation of China(11988102,12202008)Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology(TKTSPY-2020-03-05).
文摘Instability-induced wrinkle patterns of thin sheets are ubiquitous in nature,which often result in origami-like patterns that provide inspiration for the engineering of origami designs.Inspired by instability-induced origami patterns,we propose a computational origami design method based on the nonlinear analysis of loaded thin sheets and topology optimization.The bar-and-hinge model is employed for the nonlinear structural analysis,added with a displacement perturbation strategy to initiate out-of-plane buckling.Borrowing ideas from topology optimization,a continuous crease indicator is introduced as the design variable to indicate the state of a crease,which is penalized by power functions to establish the mapping relationships between the crease indicator and hinge properties.Minimizing the structural strain energy with a crease length constraint,we are able to evolve a thin sheet into an origami structure with an optimized crease pattern.Two examples with different initial setups are illustrated,demonstrating the effectiveness and feasibility of the method.
基金the National Natural Science Foundation of China(Nos.62276285 and 62236011)the Major Projects of Social Science Fundation of China(No.20&ZD279)。
文摘The game of Tibetan Go faces the scarcity of expert knowledge and research literature.Therefore,we study the zero learning model of Tibetan Go under limited computing power resources and propose a novel scaleinvariant U-Net style two-headed output lightweight network TibetanGoTinyNet.The lightweight convolutional neural networks and capsule structure are applied to the encoder and decoder of TibetanGoTinyNet to reduce computational burden and achieve better feature extraction results.Several autonomous self-attention mechanisms are integrated into TibetanGoTinyNet to capture the Tibetan Go board’s spatial and global information and select important channels.The training data are generated entirely from self-play games.TibetanGoTinyNet achieves 62%–78%winning rate against other four U-Net style models including Res-UNet,Res-UNet Attention,Ghost-UNet,and Ghost Capsule-UNet.It also achieves 75%winning rate in the ablation experiments on the attention mechanism with embedded positional information.The model saves about 33%of the training time with 45%–50%winning rate for different Monte–Carlo tree search(MCTS)simulation counts when migrated from 9×9 to 11×11 boards.Code for our model is available at https://github.com/paulzyy/TibetanGoTinyNet.
基金supported in part by the National Natural Science Foundation of China under Grants 62373353,and 62033013in part by Youth Innovation Promotion Association CAS(2019138).
文摘The existing fixed gait lower limb rehabilitation robots perform a predetermined walking trajectory for patients,ignoring their residual muscle strength.To enhance patient participation and safety in training,this paper aims to develop a lower limb rehabilitation robot with adaptive gait training capability relying on human–robot interaction force measurement.Firstly,a novel lower limb rehabilitation robot system with several active and passive driven joints is developed,and 2 face-to-face mounted cantilever beam force sensors are employed to measure the human–robot interaction forces.Secondly,a dynamic model of the rehabilitation training robot is constructed to estimate the driven forces of the human lower leg in a completely passive state.Thereafter,based on the theoretical moment from the dynamics and the actual joint interaction force collected by the sensors,an adaptive gait adjustment method is proposed to achieve the goal of adapting to the wearer’s movement intention.Finally,interactive experiments are carried out to validate the effectiveness of the developed rehabilitation training robot system.The proposed rehabilitation training robot system with adaptive gaits offers great potential for future highquality rehabilitation training,e.g.,improving participation and safety.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1203100)the National Natural Science Foundation of China(Grant No.52076002)+1 种基金the High-performance Computing Platform of Peking Universitysupport from the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘Disordered hyperuniformity(DHU)is a recently discovered novel state of amorphous systems characterized by strongly suppressed density fluctuations at large length scales as in crystalline materials,which offers great potential for achieving unusual mechanical,electronic,and photonic properties.However,despite the fundamental and technological importance of thermal transport in amorphous solids,the effect of DHU remains largely unexplored.Here,we theoretically study thermal transport in a class of two-dimensional DHU materials—monolayer amorphous carbon(MAC).Beginning with a perfect graphene lattice,we continuously apply Stone-Wales transformations to generate a series of MAC models with varied degrees of disorder and defects,which are quantified through comprehensive structural analysis including the so-called hyperuniformity index(H),where a smaller H indicates a higher degree of hyperuniformity.Subsequently,we conduct molecular dynamics simulations to obtain the thermal conductivity(κ).A significant correlation between the thermal transport behavior and degree of hyperuniformity is observed,with the room-temperatureκdecreasing from 26.3 to 5.3 W m^(-1)K^(-1)while H is tuned from 0.0004 to 0.024.Remarkably,two distinct transport regimes are identified,including a nearly-DHU regime at small H(<0.005)whereκdrops sharply and a non-DHU region at larger H whereκbecomes relatively flat.Mode-resolved analysis reveals longer lifetime and higher participation ratio for the heat carriers in nearly-DHU MAC,implying that the hidden long-range correlations could support extended modes that enhance transport.Our work highlights the impact of DHU on the thermal properties of amorphous materials and represents a conceptual advancement that is worthy of future exploration.
基金supported in part by Beijing Natural Science Foundation(Nos.L233030 and 2022MQ05)in part by the National Natural Science Foundation of China(Nos.62073322,61836015,and 61633020).
文摘Few-shot object detection receives much attention with the ability to detect novel class objects using limited annotated data.The transfer learning-based solution becomes popular due to its simple training with good accuracy,however,it is still challenging to enrich the feature diversity during the training process.And fine-grained features are also insufficient for novel class detection.To deal with the problems,this paper proposes a novel few-shot object detection method based on dual-domain feature fusion and patch-level attention.Upon original base domain,an elementary domain with more category-agnostic features is superposed to construct a two-stream backbone,which benefits to enrich the feature diversity.To better integrate various features,a dual-domain feature fusion is designed,where the feature pairs with the same size are complementarily fused to extract more discriminative features.Moreover,a patch-wise feature refinement termed as patch-level attention is presented to mine internal relations among the patches,which enhances the adaptability to novel classes.In addition,a weighted classification loss is given to assist the fine-tuning of the classifier by combining extra features from FPN of the base training model.In this way,the few-shot detection quality to novel class objects is improved.Experiments on PASCAL VOC and MS COCO datasets verify the effectiveness of the method.
基金supported in part by the National Natural Science Foundation of China(T2121002,U1909206,61903007,62073196)and in part by the S&T Program of Hebei(F2020203037).
文摘The task of path planning in amphibious environments requires additional consideration due to the complexity of the amphibious environments.This paper presents a path planning method for an amphibious robot named\AmphiRobot"with its dynamic constraints considered.First,an explicit dynamic model using Kane's method is presented.The hydrodynamic parameters are obtained through computational°uid dynamics simulations.Furthermore,a path planning method based on a hybrid¯reworks algorithm is proposed,combining the¯reworks algorithm and bare bones¯reworks algorithm,aiming at the amphibious robot's characteristics of multiple motion modes and working environments.The initially planned path is then smoothed using Dubins path under constraints determined by the dynamic model.Simulation reveals that the performance of the hybrid¯reworks algorithm approach is better than the¯reworks algorithm and bare bones¯reworks algorithm is applied separately in the amphibious environment scenarios.
基金This material is based upon work supported under an Integrated University Program Graduate Fellowship,and was supported in part by Department of Energy In-Pile Instrumentation program under DOE Idaho Operations Office Contract DE-AC07-05ID14517 and by the National Aeronautics Space Administration under award#80NSSC18M0088The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S.Government or any agency thereof.D.E.also acknowledges career development support by Institutional Development Awards(IDeA)from the National Institute of General Medical Sciences of the National Institutes of Health under Grants#P20GM103408 and P20GM109095.
文摘Soft structural textiles,or softgoods,are used within the space industry for inflatable habitats,parachutes and decelerator systems.Evaluating the safety and structural integrity of these systems occurs through structural health monitoring systems(SHM),which integrate non-invasive/non-destructive testing methods to detect,diagnose,and locate damage.Strain/load monitoring of these systems is limited while utilizing traditional strain gauges as these gauges are typically stiff,operate at low temperatures,and fail when subjected to high strain that is a result of high loading classifying them as unsuitable for SHM of soft structural textiles.For this work,a capacitance based strain gauge(CSG)was fabricated via aerosol jet printing(AJP)using silver nanoparticle ink on a flexible polymer substrate.Printed strain gauges were then compared to a commercially available high elongation resistance-based strain gauge(HE-RSG)for their ability to monitor strained Kevlar straps having a 26.7 kN(6 klbf)load.Dynamic,static and cyclic loads were used to characterize both types of strain monitoring devices.Printed CSGs demonstrated superior performance for high elongation strain measurements when compared to commonly used HE-RSGs,and were observed to operate with a gauge factor of 5.2 when the electrode arrangement was perpendicular to the direction of strain.
基金This work was supported by the National Natural Science Foundation of China(Nos.62073322 and 61633020)the CIE-Tencent Robotics X Rhino-Bird Focused Research Program(No.2022-07)the Beijing Natural Science Foundation(No.2022MQ05).
文摘Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usually transmit the high-level feature in the encoder to the decoder,and low-level features are neglected.It is noted that low-level features contain abundant detail information,and how to fully exploit low-level features remains unsolved.Meanwhile,the channel information in high-level feature is also not well mined.Inevitably,the performance of grasp detection is degraded.To solve these problems,we propose a grasp detection network with hierarchical multi-scale feature fusion and inverted shuffle residual.Both low-level and high-level features in the encoder are firstly fused by the designed skip connections with attention module,and the fused information is then propagated to corresponding layers of the decoder for in-depth feature fusion.Such a hierarchical fusion guarantees the quality of grasp prediction.Furthermore,an inverted shuffle residual module is created,where the high-level feature from encoder is split in channel and the resultant split features are processed in their respective branches.By such differentiation processing,more high-dimensional channel information is kept,which enhances the representation ability of the network.Besides,an information enhancement module is added before the encoder to reinforce input information.The proposed method attains 98.9%and 97.8%in image-wise and object-wise accuracy on the Cornell grasping dataset,respectively,and the experimental results verify the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China(Nos.U1909206,T2121002,61903007,and 11972373)。
文摘For complex functions to emerge in artificial systems,it is important to understand the intrinsic mechanisms of biological swarm behaviors in nature.In this paper,we present a comprehensive survey of pursuit–evasion,which is a critical problem in biological groups.First,we review the problem of pursuit–evasion from three different perspectives:game theory,control theory and artificial intelligence,and bio-inspired perspectives.Then we provide an overview of the research on pursuit–evasion problems in biological systems and artificial systems.We summarize predator pursuit behavior and prey evasion behavior as predator–prey behavior.Next,we analyze the application of pursuit–evasion in artificial systems from three perspectives,i.e.,strong pursuer group vs.weak evader group,weak pursuer group vs.strong evader group,and equal-ability group.Finally,relevant prospects for future pursuit–evasion challenges are discussed.This survey provides new insights into the design of multi-agent and multi-robot systems to complete complex hunting tasks in uncertain dynamic scenarios.
基金supported by the National Natural Science Foundation of China(Nos.61725305,U1909206,T2121002,and62073196)the Postdoctoral Innovative Talent Support Program(No.BX2021010)the S&T Program of Hebei Province,China(No.F2020203037)。
文摘To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,allowing high-speed and high-precision object detection.Specifically,the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection.With the purpose of further improvement on the detection accuracy,YOLOv4 is transformed into a four-scale detection method.To improve the detection speed,model pruning is applied to the new model.By virtue of the improved detection methods,the robot can collect garbage autonomously.The detection speed is up to 66.67 frames/s with a mean average precision(mAP)of 95.099%,and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.
基金supported by the National Natural Science Foundation of China (Grant No.62176218)the Fundamental Research Funds for the Central Universities (Grant No.XDJK2020TY003)。
文摘This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems(RAP)where the objective functions are generally convex.With the help of projection operators,a primal-dual framework,and Nesterov's accelerated method,we first design a distributed accelerated primal-dual projection neurodynamic approach(DAPDP),and its convergence rate of the primal-dual gap is O(1/(t^(2)))by selecting appropriate parameters and initial values.Then,when the local closed convex sets are convex inequalities which have no closed-form solutions of their projection operators,we further propose a distributed accelerated penalty primal-dual neurodynamic approach(DAPPD)on the strength of the penalty method,primal-dual framework,and Nesterov's accelerated method.Based on the above analysis,we prove that DAPPD also has a convergence rate O(1/(t^(2)))of the primal-dual gap.Compared with the distributed dynamical approaches based on the classical primal-dual framework,our proposed distributed accelerated neurodynamic approaches have faster convergence rates.Numerical simulations demonstrate that our proposed neurodynamic approaches are feasible and effective.