In this study,we simulated the thermal behavior of the mud-brick walls of a Nubian vault.We used EnergyPlus software for the simulation.The results obtained showed that the indoor temperature varies from 25.5℃ to 26....In this study,we simulated the thermal behavior of the mud-brick walls of a Nubian vault.We used EnergyPlus software for the simulation.The results obtained showed that the indoor temperature varies from 25.5℃ to 26.5℃ for the period of January 2018.It varies from 33.2℃ to 33.6℃ with an average value of 33.1℃ for the month of April 2018.For the period of July 2018,it varies from 30.3℃ to 32.2℃ with an average value of 31.2℃..Relative humidity for the period of July ranged from 62.3%to 73.5%,with an average value of 67.9%.The simulation enabled us to compare simulated and measured temperature and humidity values.We found that the level of thermal comfort in the Nubian vault is acceptable in both cool and hot periods.In view of these results,we can say that the Nubian vault is an architecture suited to our climate.The technical concept of the Nubian vault is adapted to the climatic conditions and traditional know-how of the Sahel.We also found that the use of raw earth,a locally available material,and the Nubian vault architectural process,contribute to thermal comfort and a reappropriation of local and adapted know-how.展开更多
In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which we...In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which were obtained numerically from the restricted Hartree-Fock (RHF) equation. This RHF equation employs the local density approach for exchange interactions including plasma Debye screening. Theoretical RHF and random phase approximation with exchange (RPAE) velocity calculations have shown that the GOSs for excitations to 3 s0(3 p,4 p,5 p,6 p)depend on the plasma Debye screening effects, as shown by the reduction in the GOS amplitude with decreasing Debye length λD. The agreement between the present RPAE V results for the transitions 3 s→3 s0(3 p,4 p,5 p)and the length calculations of Martínez-Flores was satisfactory. Correlation effects were found quite to be significant in the vicinity of the maxima of the GOS of the 3 s→3 s0(4 p,5 p,6 p)excitations by using the RPAE V approach. We note the poor influence of many electron correlations on the GOS of (3 s→3 p)transition with the same principal quantum number. Finally, we comment that the RPAE V calculations are useful in investigating electron correlation effects on the transition GOS of atomic sodium planted in Debye plasma. The present velocity results also reveal that the 3 s→3 s0(5p, 6p)transition GOSs tend to be delocalized due to more significant screening effects at Debye lengths λD=20and 30 a.u. for excited subshells 5p and 6p, respectively. We report here novel results of GOS for 3 s→3 s06ptransition obtained from different Debye lengths.展开更多
The generalized oscillator strengths (GOSs) of 2p63s0 (3p, 4p, 5p, 6p) states excited from sodium ground state in Debye plasma, are studied by two kinds of theoretical approaches: the restricted Hartree-Fock (RHF) met...The generalized oscillator strengths (GOSs) of 2p63s0 (3p, 4p, 5p, 6p) states excited from sodium ground state in Debye plasma, are studied by two kinds of theoretical approaches: the restricted Hartree-Fock (RHF) method and the random phase approximation with exchange (RPAE). Wavefunctions of the ground state and the excited states are calculated numerically from the RHF equation, employing the local density approach for exchange interaction including, in extension, plasma screening effects. The GOSs have been computed by using these wavefunctions. The results of RHF and RPAE calculations of the GOS for different Debye lengths have been reported for sodium dipole excitation to 3s0 (3p, 4p, 5p, 6p). We show, in this study, that RPAE results for values of Debye length D = 30, 100, ∞ are in excellent agreement with those found by other authors. The results of RPAE calculations show that correlation effects are quite significant around the maxima GOS for the excitations to 3s0 (4p, 5p, 6p) but are found to have no great influence in the GOS for the dipole excitation to 3s03p. We find that the amplitude of the GOS has noticeably been reduced in going from higher to lower Debye length. We’ve observed here that the peak of the GOS shifts towards a small momentum transfer when the value D = 20 a.u is taken. These results show an important influence of the Debye plasma screening interactions on the GOS as the screening Debye length is decreased.展开更多
A new detection system in scanning electron microscope,which filters in energy and detects the backscattered electrons close to the microscope axis,is described.This technique ameliorates the dependence of the back.sc...A new detection system in scanning electron microscope,which filters in energy and detects the backscattered electrons close to the microscope axis,is described.This technique ameliorates the dependence of the back.scat tering coefficient on atomic number,and suppresses effectively the relief contrast at the same time.Therefore this new method is very suitable to the composition analysis.展开更多
Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmissi...Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-VIS absorption spectra. XRD patterns and TEM images of Y2O3 + Au films give the same resuits on structure and particle size as that of pure Y2O3 films. The surface plasma resonance (SPR) of Au nanoparticles in Y2O3 + Au film was observed around 550 nm in the absorption spectrum and its position shifts to red with increasing annealing temperature is caused by the increase of dielectric constant of Y2O3 matrix and the size of Au nanoparticles. The second and third order nonlinear optical effects of Y2O3 + Au films were also observed. The photoluminescent properties of Y2O3 : Eu + Au films were investigated and results indicate that there exist an energy transfer from Eu^3 + to Au nanoparticles and this energy transfer decreases the emission of Eu^3 + in Y2O3 : Eu + Au film.展开更多
According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies ...According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.展开更多
We conducted a theoretical study on the electronic properties of a single-layer graphene asymmetric quantum well.Quantification of energy levels is limited by electron–hole conversion at the barrier interfaces and fr...We conducted a theoretical study on the electronic properties of a single-layer graphene asymmetric quantum well.Quantification of energy levels is limited by electron–hole conversion at the barrier interfaces and free-electron continuum.Electron–hole conversion at the barrier interfaces can be controlled by introducing an asymmetry between barriers and taking into account the effect of the interactions of the graphene sheet with the substrate.The interaction with the substrate induces an effective mass to carriers,allowing observation of Fabry–P′erot resonances under normal incidence and extinction of Klein tunneling.The asymmetry,between barriers creates a transmission gap between confined states and free-electron continuum,allowing the large graphene asymmetric quantum well to be exploited as a photo-detector operating at mid-and far-infrared frequency regimes.展开更多
Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume-Capel model of a system formed by ...Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume-Capel model of a system formed by two magnetic multi-layer materials, of different thicknesses, separated by a non-magnetic spacer of thickness M. It is found that the multilayer magnetic order-disorder transition temperature depends strongly on the value of the transverse anisotropy. The multilayer transition temperature decreases when increasing the transverse anisotropy. Furthermore, there exists a critical quantum transverse anisotropy △xL beyond which the separate transitions occur in the two magnetic layers. The critical transverse anisotropy AxL decreases (increases) on increasing the non-magnetic spacer of thickness M (on increasing the crystal field), and AxL undergoes oscillations as a function of the Fermi level.展开更多
Bell inequality is violated by the quantum mechanical predictions made from an entangled state of the composite system. In this paper we examine this inequality and entanglement measures in the construction of the coh...Bell inequality is violated by the quantum mechanical predictions made from an entangled state of the composite system. In this paper we examine this inequality and entanglement measures in the construction of the coherent states for two-qubit pure and mixed states, we find a link to some entanglement measures through some new parameters (amplitudes of coherent states). Conditions for maximal entanglement and separability are then established for both pure and mixed states. Finally, we analyze and compare the violation of Bell inequality for a class of mixed states with the degree of entanglement by applying the formalism of Horodecki et al.展开更多
The electronic and optical properties of TiS2 are studied of density functional theory. A linearized and augmented by using an ab-initio calculation within the frame plane wave basis set with the generalized gradient ...The electronic and optical properties of TiS2 are studied of density functional theory. A linearized and augmented by using an ab-initio calculation within the frame plane wave basis set with the generalized gradient approximation as proposed by Perdew et al. is used for the energy exchange-correlation determination. The results show a metallic character of TiS2, and the plots of total and partial densities of states of TiS2 show the metallic character of the bonds and a strong hybridization between the states d of Ti and p of S below the Fermi energy. The optical properties of the material such as real and imaginary parts of dielectric constant (ε(w) = ε1(w) + iε2(w)), refractive index n(w), optical reflectivity R(w), for E / /x and E / /z are performed for the energy range of 0-.14 eV.展开更多
This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell’s electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D mo...This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell’s electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D modelling study, the continuity equation is resolved. We determined the photocurrent density, the photovoltage and the solar cell’s electric power which is a calibrated function of the junction recombination velocity (Sfu). Plots of solar cell’s electric power with the junction recombination velocity give the maximum solar cell’s electric power, Pm. Influence of various parameters such as grain size (g), grain boundaries recombination velocity (Sgb), wavelength (λ) and for different illumination modes on the solar cell’s electric power is studied.展开更多
Experimental setup of transient decay which occurs between two steady state operating points is recalled. The continuity equation is resolved using both the junction dynamic velocity (Sf) and back side recombination v...Experimental setup of transient decay which occurs between two steady state operating points is recalled. The continuity equation is resolved using both the junction dynamic velocity (Sf) and back side recombination velocity (Sb). The transient excess minority carriers density appears as the sum of infinite terms. Influence of magnetic field on the transient excess minority carriers density and transient photo voltage is studied and it is demonstrated that the use of this technique is valid only when the magnetic field is lower than 0.001 T.展开更多
Cuprous oxide (Cu2O) thin films have been grown by electrodeposition technique onto ITO-coated glass substrates from aqueous copper acetate solutions with addition of sodium thiosulfate at 60 ℃ The effects of sodiu...Cuprous oxide (Cu2O) thin films have been grown by electrodeposition technique onto ITO-coated glass substrates from aqueous copper acetate solutions with addition of sodium thiosulfate at 60 ℃ The effects of sodium thiosulfate on the electrochemical deposition of Cu2O films were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at - 0.58 V vs. SCE and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FrIR), scanning electron microscopy (SEM), and optical, photoelectrochemical and electrical measurements. X-ray diffraction results indicated that the synthesized Cu2O films had a pure cubic phase with a marked preferential orientation peak along (200) plane and with lattice constants a = b = c = 0.425 rim. FFIR results confirmed the presence of Cu2O films at peak 634 cm 1. SEM images of Cu2O films showed a better compactness and spherical-shaped composition. Optical properties of Cu2O films reveal a high optical transmission (〉80%) and high absorption coefficient (α 〉 104 cm- 1 ) in visiblelight region. The optical energy band gap was found to be 2.103 eV. Photoelectrochemical measurements indicated that Cu2O films had n-type semiconductor conduction, which confirmed by Hall Effect measurements. Electrical properties of Cu2O films showed a low electrical resistivity of 61.30 Ω. cm-1, carrier concentration of-4.94×1015cm -3andmobility of20.61cm2.V 1,s-l.Theobtained Cu2O thin films with suitable properties are promising semiconductor material for fabrication of photovoltaic solar cells,展开更多
The mechanical alloying process has been used to prepare nanostructured Fe31Co31Nb8B30 (wt%) alloy from pure elemental powders in a high energy planetary ball-mill Retsch PM400. Microstructural changes, phase transfor...The mechanical alloying process has been used to prepare nanostructured Fe31Co31Nb8B30 (wt%) alloy from pure elemental powders in a high energy planetary ball-mill Retsch PM400. Microstructural changes, phase transformation and kinetics were studied by X-ray diffraction, differential scanning calorimetry and M?ssbauer spectrometry. The crystallite size reduction down the nanometer scale (~8 nm) is accompanied by the introduction of internal strains up to 1.8% (root-mean square strain, rms). Further milling time leads to the formation of partially paramagnetic amorphous structure in which bcc FeCo nanograins are embedded. The kinetics of amorphization during the milling process can be described by two regimes characterized by different values of the Avrami parameter n1 = 1.41 and n2 = 0.34. The excess enthalpy due to the high density of defects is released at temperatures below 300°C. The glass transition temperature increases with increasing milling time.展开更多
In this work the structural,electronic and thermoelectric properties of YbMg_(2)X_(2)(X=P,As,Sb,Bi)zintl compounds were investigated comprehensively using first principles study.The electronic properties were studied ...In this work the structural,electronic and thermoelectric properties of YbMg_(2)X_(2)(X=P,As,Sb,Bi)zintl compounds were investigated comprehensively using first principles study.The electronic properties were studied using PBE GGA,TB-mBJ and hybrid(YS-PBE0)potentials.All the structural parameters of optimized structures are in harmonious agreement to the available data.The band structure study illustrates that the titled materials manifest metallic and semi metallic nature using PBE and TB-mBJ potentials while they show wide band gap semiconducting behavior by following hybrid(YS-PBE0)potential.Total density of states(TDOS)and partial density of states(PDOS)were also calculated to glimpse the contribution of orbitals of atoms in the formation of bands.Transport properties were studied by using BoltzTraP2 code employed to WIEN2k.We get enormous values of Seebeck coefficient(S),power factor(PF)and thermoelectric figure of merit(ZT)for all the samples YbMg_(2)X_(2)(X=P,As,Sb,Bi),Moreover,the overwhelming transport properties for the titled compounds indicate the optimum level of carriers’concentration which pinpoints these materials to be better thermoelectrics in the 1-2-2 zintl family.展开更多
Using N=2 supergravity formalism,we investigate certain behaviors of five-dimensional black objects from the compactification of M-theory on a Calabi-Yau three-fold.The manifold has been constructed as the intersectio...Using N=2 supergravity formalism,we investigate certain behaviors of five-dimensional black objects from the compactification of M-theory on a Calabi-Yau three-fold.The manifold has been constructed as the intersection of two homogeneous polynomials of degrees(ω+2,1)and(2,1)in a product of two weighted projective spaces given by WP^(4)(ω,1,1,1,1)×P^(1).First,we determine the allowed electric charge regions of the BPS and non BPS black holes obtained by wrapping M2-branes on appropriate two cycles in such a proposed Calabi-Yau three-fold.After that,we calculate the entropy of these solutions which takes a maximal value corresponding to ω=1 defining the ordinary projective space P^(4).For generic values of ω,we show that the non BPS states are unstable.Then,we conduct a similar study of five-dimensional black strings.Concerning the allowed magnetic charge regions of the BPS and non BPS black stringy solutions derived from M5-branes on dual divisors,we calculate the tension taking a minimal value for P^(4).By determining the recombination factor,we show that the non-BPS black string states are stable in the allowed regions in the magnetic charge space.展开更多
In our study of super quantum discord between two excitonic qubits inside a coupled semiconductor quantum dots system,our primary focus is to uncover the impact of weak measurement on its quantum characteristics.To ac...In our study of super quantum discord between two excitonic qubits inside a coupled semiconductor quantum dots system,our primary focus is to uncover the impact of weak measurement on its quantum characteristics.To achieve this,we analyze how varying the measurement strength x,affects this super quantum correlation in the presence of thermal effects.Additionally,we assess the effect of this variation on the system's evolution against its associated quantum parameters;external electric fields,exciton-exciton dipole interaction energy and F?rster interaction.Our findings indicate that adjusting x to smaller values effectively enhances the super quantum correlation,making weak measurements act as a catalyst.This adjustment ensures its robustness against thermal effects while preserving the non-classical attributes of the system.Furthermore,our study unveils that the effect of weak measurements on this latter surpasses the quantum effects associated with the system.Indeed,manipulating the parameter x allows the weak measurement to function as a versatile tool for modulating quantum characteristics and controlling exciton-exciton interactions within the coupled semiconductor quantum dots system.展开更多
Modelization equations of six approaches for tracking the sun are recalled and used to evaluate the constraints and performances to which they lead to.The geographical study case is taken for the specific latitude of ...Modelization equations of six approaches for tracking the sun are recalled and used to evaluate the constraints and performances to which they lead to.The geographical study case is taken for the specific latitude of 12 North that is a good matching with the location of the country of Burkina Faso.Three decisive periods were locally established in order to consider the different travels of the sun on sky during one year.This work presents some technical data which facilitates the choice of sun tracking approaches with concern of a concentrator limits such as its angle of acceptance,its motion control card interpolation model,or its minimum irradiation level for energy conversion effectiveness.展开更多
The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band ...The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida(RKKY) interaction.展开更多
In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions ora quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigat...In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions ora quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigating this hard problem and tested the algorithm in quantum-mechanical systems in 1+1 and 2t1 dimensions. In this paper we apply it to the study of thelow-energy quantum physics of the (3+1)-dimensional harmonic oscillator.展开更多
文摘In this study,we simulated the thermal behavior of the mud-brick walls of a Nubian vault.We used EnergyPlus software for the simulation.The results obtained showed that the indoor temperature varies from 25.5℃ to 26.5℃ for the period of January 2018.It varies from 33.2℃ to 33.6℃ with an average value of 33.1℃ for the month of April 2018.For the period of July 2018,it varies from 30.3℃ to 32.2℃ with an average value of 31.2℃..Relative humidity for the period of July ranged from 62.3%to 73.5%,with an average value of 67.9%.The simulation enabled us to compare simulated and measured temperature and humidity values.We found that the level of thermal comfort in the Nubian vault is acceptable in both cool and hot periods.In view of these results,we can say that the Nubian vault is an architecture suited to our climate.The technical concept of the Nubian vault is adapted to the climatic conditions and traditional know-how of the Sahel.We also found that the use of raw earth,a locally available material,and the Nubian vault architectural process,contribute to thermal comfort and a reappropriation of local and adapted know-how.
文摘In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which were obtained numerically from the restricted Hartree-Fock (RHF) equation. This RHF equation employs the local density approach for exchange interactions including plasma Debye screening. Theoretical RHF and random phase approximation with exchange (RPAE) velocity calculations have shown that the GOSs for excitations to 3 s0(3 p,4 p,5 p,6 p)depend on the plasma Debye screening effects, as shown by the reduction in the GOS amplitude with decreasing Debye length λD. The agreement between the present RPAE V results for the transitions 3 s→3 s0(3 p,4 p,5 p)and the length calculations of Martínez-Flores was satisfactory. Correlation effects were found quite to be significant in the vicinity of the maxima of the GOS of the 3 s→3 s0(4 p,5 p,6 p)excitations by using the RPAE V approach. We note the poor influence of many electron correlations on the GOS of (3 s→3 p)transition with the same principal quantum number. Finally, we comment that the RPAE V calculations are useful in investigating electron correlation effects on the transition GOS of atomic sodium planted in Debye plasma. The present velocity results also reveal that the 3 s→3 s0(5p, 6p)transition GOSs tend to be delocalized due to more significant screening effects at Debye lengths λD=20and 30 a.u. for excited subshells 5p and 6p, respectively. We report here novel results of GOS for 3 s→3 s06ptransition obtained from different Debye lengths.
文摘The generalized oscillator strengths (GOSs) of 2p63s0 (3p, 4p, 5p, 6p) states excited from sodium ground state in Debye plasma, are studied by two kinds of theoretical approaches: the restricted Hartree-Fock (RHF) method and the random phase approximation with exchange (RPAE). Wavefunctions of the ground state and the excited states are calculated numerically from the RHF equation, employing the local density approach for exchange interaction including, in extension, plasma screening effects. The GOSs have been computed by using these wavefunctions. The results of RHF and RPAE calculations of the GOS for different Debye lengths have been reported for sodium dipole excitation to 3s0 (3p, 4p, 5p, 6p). We show, in this study, that RPAE results for values of Debye length D = 30, 100, ∞ are in excellent agreement with those found by other authors. The results of RPAE calculations show that correlation effects are quite significant around the maxima GOS for the excitations to 3s0 (4p, 5p, 6p) but are found to have no great influence in the GOS for the dipole excitation to 3s03p. We find that the amplitude of the GOS has noticeably been reduced in going from higher to lower Debye length. We’ve observed here that the peak of the GOS shifts towards a small momentum transfer when the value D = 20 a.u is taken. These results show an important influence of the Debye plasma screening interactions on the GOS as the screening Debye length is decreased.
基金Supported by the National Natural Science Foundation of China under Grant No.10045001.
文摘A new detection system in scanning electron microscope,which filters in energy and detects the backscattered electrons close to the microscope axis,is described.This technique ameliorates the dependence of the back.scat tering coefficient on atomic number,and suppresses effectively the relief contrast at the same time.Therefore this new method is very suitable to the composition analysis.
文摘Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-VIS absorption spectra. XRD patterns and TEM images of Y2O3 + Au films give the same resuits on structure and particle size as that of pure Y2O3 films. The surface plasma resonance (SPR) of Au nanoparticles in Y2O3 + Au film was observed around 550 nm in the absorption spectrum and its position shifts to red with increasing annealing temperature is caused by the increase of dielectric constant of Y2O3 matrix and the size of Au nanoparticles. The second and third order nonlinear optical effects of Y2O3 + Au films were also observed. The photoluminescent properties of Y2O3 : Eu + Au films were investigated and results indicate that there exist an energy transfer from Eu^3 + to Au nanoparticles and this energy transfer decreases the emission of Eu^3 + in Y2O3 : Eu + Au film.
文摘According to first-principles density functional calculations, we have investigated the magnetic properties of Mn- doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.
文摘We conducted a theoretical study on the electronic properties of a single-layer graphene asymmetric quantum well.Quantification of energy levels is limited by electron–hole conversion at the barrier interfaces and free-electron continuum.Electron–hole conversion at the barrier interfaces can be controlled by introducing an asymmetry between barriers and taking into account the effect of the interactions of the graphene sheet with the substrate.The interaction with the substrate induces an effective mass to carriers,allowing observation of Fabry–P′erot resonances under normal incidence and extinction of Klein tunneling.The asymmetry,between barriers creates a transmission gap between confined states and free-electron continuum,allowing the large graphene asymmetric quantum well to be exploited as a photo-detector operating at mid-and far-infrared frequency regimes.
文摘Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume-Capel model of a system formed by two magnetic multi-layer materials, of different thicknesses, separated by a non-magnetic spacer of thickness M. It is found that the multilayer magnetic order-disorder transition temperature depends strongly on the value of the transverse anisotropy. The multilayer transition temperature decreases when increasing the transverse anisotropy. Furthermore, there exists a critical quantum transverse anisotropy △xL beyond which the separate transitions occur in the two magnetic layers. The critical transverse anisotropy AxL decreases (increases) on increasing the non-magnetic spacer of thickness M (on increasing the crystal field), and AxL undergoes oscillations as a function of the Fermi level.
文摘Bell inequality is violated by the quantum mechanical predictions made from an entangled state of the composite system. In this paper we examine this inequality and entanglement measures in the construction of the coherent states for two-qubit pure and mixed states, we find a link to some entanglement measures through some new parameters (amplitudes of coherent states). Conditions for maximal entanglement and separability are then established for both pure and mixed states. Finally, we analyze and compare the violation of Bell inequality for a class of mixed states with the degree of entanglement by applying the formalism of Horodecki et al.
文摘The electronic and optical properties of TiS2 are studied of density functional theory. A linearized and augmented by using an ab-initio calculation within the frame plane wave basis set with the generalized gradient approximation as proposed by Perdew et al. is used for the energy exchange-correlation determination. The results show a metallic character of TiS2, and the plots of total and partial densities of states of TiS2 show the metallic character of the bonds and a strong hybridization between the states d of Ti and p of S below the Fermi energy. The optical properties of the material such as real and imaginary parts of dielectric constant (ε(w) = ε1(w) + iε2(w)), refractive index n(w), optical reflectivity R(w), for E / /x and E / /z are performed for the energy range of 0-.14 eV.
文摘This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell’s electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D modelling study, the continuity equation is resolved. We determined the photocurrent density, the photovoltage and the solar cell’s electric power which is a calibrated function of the junction recombination velocity (Sfu). Plots of solar cell’s electric power with the junction recombination velocity give the maximum solar cell’s electric power, Pm. Influence of various parameters such as grain size (g), grain boundaries recombination velocity (Sgb), wavelength (λ) and for different illumination modes on the solar cell’s electric power is studied.
文摘Experimental setup of transient decay which occurs between two steady state operating points is recalled. The continuity equation is resolved using both the junction dynamic velocity (Sf) and back side recombination velocity (Sb). The transient excess minority carriers density appears as the sum of infinite terms. Influence of magnetic field on the transient excess minority carriers density and transient photo voltage is studied and it is demonstrated that the use of this technique is valid only when the magnetic field is lower than 0.001 T.
基金Supported by the Algerian Ministry of Higher Education and Scientific Research(CNEPRU project number:J0101520090018)
文摘Cuprous oxide (Cu2O) thin films have been grown by electrodeposition technique onto ITO-coated glass substrates from aqueous copper acetate solutions with addition of sodium thiosulfate at 60 ℃ The effects of sodium thiosulfate on the electrochemical deposition of Cu2O films were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at - 0.58 V vs. SCE and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FrIR), scanning electron microscopy (SEM), and optical, photoelectrochemical and electrical measurements. X-ray diffraction results indicated that the synthesized Cu2O films had a pure cubic phase with a marked preferential orientation peak along (200) plane and with lattice constants a = b = c = 0.425 rim. FFIR results confirmed the presence of Cu2O films at peak 634 cm 1. SEM images of Cu2O films showed a better compactness and spherical-shaped composition. Optical properties of Cu2O films reveal a high optical transmission (〉80%) and high absorption coefficient (α 〉 104 cm- 1 ) in visiblelight region. The optical energy band gap was found to be 2.103 eV. Photoelectrochemical measurements indicated that Cu2O films had n-type semiconductor conduction, which confirmed by Hall Effect measurements. Electrical properties of Cu2O films showed a low electrical resistivity of 61.30 Ω. cm-1, carrier concentration of-4.94×1015cm -3andmobility of20.61cm2.V 1,s-l.Theobtained Cu2O thin films with suitable properties are promising semiconductor material for fabrication of photovoltaic solar cells,
文摘The mechanical alloying process has been used to prepare nanostructured Fe31Co31Nb8B30 (wt%) alloy from pure elemental powders in a high energy planetary ball-mill Retsch PM400. Microstructural changes, phase transformation and kinetics were studied by X-ray diffraction, differential scanning calorimetry and M?ssbauer spectrometry. The crystallite size reduction down the nanometer scale (~8 nm) is accompanied by the introduction of internal strains up to 1.8% (root-mean square strain, rms). Further milling time leads to the formation of partially paramagnetic amorphous structure in which bcc FeCo nanograins are embedded. The kinetics of amorphization during the milling process can be described by two regimes characterized by different values of the Avrami parameter n1 = 1.41 and n2 = 0.34. The excess enthalpy due to the high density of defects is released at temperatures below 300°C. The glass transition temperature increases with increasing milling time.
基金the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number(R.G.P2/139/43)。
文摘In this work the structural,electronic and thermoelectric properties of YbMg_(2)X_(2)(X=P,As,Sb,Bi)zintl compounds were investigated comprehensively using first principles study.The electronic properties were studied using PBE GGA,TB-mBJ and hybrid(YS-PBE0)potentials.All the structural parameters of optimized structures are in harmonious agreement to the available data.The band structure study illustrates that the titled materials manifest metallic and semi metallic nature using PBE and TB-mBJ potentials while they show wide band gap semiconducting behavior by following hybrid(YS-PBE0)potential.Total density of states(TDOS)and partial density of states(PDOS)were also calculated to glimpse the contribution of orbitals of atoms in the formation of bands.Transport properties were studied by using BoltzTraP2 code employed to WIEN2k.We get enormous values of Seebeck coefficient(S),power factor(PF)and thermoelectric figure of merit(ZT)for all the samples YbMg_(2)X_(2)(X=P,As,Sb,Bi),Moreover,the overwhelming transport properties for the titled compounds indicate the optimum level of carriers’concentration which pinpoints these materials to be better thermoelectrics in the 1-2-2 zintl family.
文摘Using N=2 supergravity formalism,we investigate certain behaviors of five-dimensional black objects from the compactification of M-theory on a Calabi-Yau three-fold.The manifold has been constructed as the intersection of two homogeneous polynomials of degrees(ω+2,1)and(2,1)in a product of two weighted projective spaces given by WP^(4)(ω,1,1,1,1)×P^(1).First,we determine the allowed electric charge regions of the BPS and non BPS black holes obtained by wrapping M2-branes on appropriate two cycles in such a proposed Calabi-Yau three-fold.After that,we calculate the entropy of these solutions which takes a maximal value corresponding to ω=1 defining the ordinary projective space P^(4).For generic values of ω,we show that the non BPS states are unstable.Then,we conduct a similar study of five-dimensional black strings.Concerning the allowed magnetic charge regions of the BPS and non BPS black stringy solutions derived from M5-branes on dual divisors,we calculate the tension taking a minimal value for P^(4).By determining the recombination factor,we show that the non-BPS black string states are stable in the allowed regions in the magnetic charge space.
文摘In our study of super quantum discord between two excitonic qubits inside a coupled semiconductor quantum dots system,our primary focus is to uncover the impact of weak measurement on its quantum characteristics.To achieve this,we analyze how varying the measurement strength x,affects this super quantum correlation in the presence of thermal effects.Additionally,we assess the effect of this variation on the system's evolution against its associated quantum parameters;external electric fields,exciton-exciton dipole interaction energy and F?rster interaction.Our findings indicate that adjusting x to smaller values effectively enhances the super quantum correlation,making weak measurements act as a catalyst.This adjustment ensures its robustness against thermal effects while preserving the non-classical attributes of the system.Furthermore,our study unveils that the effect of weak measurements on this latter surpasses the quantum effects associated with the system.Indeed,manipulating the parameter x allows the weak measurement to function as a versatile tool for modulating quantum characteristics and controlling exciton-exciton interactions within the coupled semiconductor quantum dots system.
文摘Modelization equations of six approaches for tracking the sun are recalled and used to evaluate the constraints and performances to which they lead to.The geographical study case is taken for the specific latitude of 12 North that is a good matching with the location of the country of Burkina Faso.Three decisive periods were locally established in order to consider the different travels of the sun on sky during one year.This work presents some technical data which facilitates the choice of sun tracking approaches with concern of a concentrator limits such as its angle of acceptance,its motion control card interpolation model,or its minimum irradiation level for energy conversion effectiveness.
文摘The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida(RKKY) interaction.
基金National Science Fund for Distingu .shed Young Scientists of China,国家自然科学基金,广东省自然科学基金,教育部科学技术研究项目,广东省国家通信公司资助项目,中山大学校科研和教改项目
文摘In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions ora quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigating this hard problem and tested the algorithm in quantum-mechanical systems in 1+1 and 2t1 dimensions. In this paper we apply it to the study of thelow-energy quantum physics of the (3+1)-dimensional harmonic oscillator.