Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the...Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training.展开更多
Moirésystems have emerged as an ideal platform for exploring interaction effects and correlated states.However,most of the experimental systems are based on either triangular or honeycomb lattices.In this study,b...Moirésystems have emerged as an ideal platform for exploring interaction effects and correlated states.However,most of the experimental systems are based on either triangular or honeycomb lattices.In this study,based on the self-consistent Hartree–Fock calculation,we investigate the phase diagram of the kagomélattice in a recently discovered system with two degenerateΓvalley orbitals and strong spin–orbit coupling.By focusing on the filling factors of 1/2,1/3 and 2/3,we identify various symmetry-breaking states by adjusting the screening length and dielectric constant.At the half filling,we discover that the spin–orbit coupling induces Dzyaloshinskii–Moriya interaction and stabilizes a classical magnetic state with 120°ordering.Additionally,we observe a transition to a ferromagnetic state with out-of-plane ordering.In the case of 1/3 filling,the system is ferromagnetically ordered due to the lattice frustration.Furthermore,for 2/3 filling,the system exhibits a pinned droplet state and a 120°magnetic ordered state at weak and immediate coupling strengths,respectively.For the strong coupling case,when dealing with non-integer filling,the system is always charge ordered with sublattice polarization.Our study serves as a starting point for exploring the effects of correlation in moirékagomésystems.展开更多
We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interpl...We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interplay between the coherent couplings between quantum dots,the magnetic flux,and the dissipation due to the tunnel coupling with the reservoirs.展开更多
Hypernuclei,nuclei containing one or more hyperons,serve as unique laboratories for probing the non-perturbative quantum chromodynamics(QCD).Recent progress in hypernuclear physics,driven by advanced experimental tech...Hypernuclei,nuclei containing one or more hyperons,serve as unique laboratories for probing the non-perturbative quantum chromodynamics(QCD).Recent progress in hypernuclear physics,driven by advanced experimental techniques and theoretical innovations,is briefly reviewed with a focus on key findings and unresolved challenges,such as the precise determination of the hypertriton binding energy,investigations of charge symmetry breaking in mirror hypernuclei,and the search for exotic systems,including the neutral nnΛstate.Experimental breakthroughs,including invariant-mass analyses and femtoscopy studies in heavy-ion collisions,as well as high-resolutionγ-spectroscopy,have enabled precise studies of light hypernuclei and offered critical insights into the hyperon–nucleon interaction.Theoretical progress,including ab initio calculations based on chiral effective field theory and lattice QCD,has further enhanced our understanding of hyperon–nucleon and hyperon–hyperon interactions.展开更多
In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking rec...BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.展开更多
We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and...We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and tested using X-ray diffraction(XRD),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM),respectively.The results demonstrate that the coercivity of CoPt nanoparticles can be effectively controlled by adjusting the atomic ratio of Co and Pt in the samples.Among the compositions studied,the Co_(45)Pt_(55)sample synthesized by the sol-gel method exhibits smaller grain size and a coercivity as high as 6.65×10^(5) A/m is achieved.The morphology and microstructure of the nanoparticles were analyzed by TEM images,indicating that a slight excess of Pt can effectively enhance the coercivity of CoPt nanoparticles.展开更多
Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks...Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.展开更多
This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model E...This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.展开更多
The solution processibility of perovskites provides a costeffective and high-throughput route for fabricating state-of-the-art solar cells.However,the fast kinetics of precursor-to-perovskite transformation is suscept...The solution processibility of perovskites provides a costeffective and high-throughput route for fabricating state-of-the-art solar cells.However,the fast kinetics of precursor-to-perovskite transformation is susceptible to processing conditions,resulting in an uncontrollable variance in device performance.Here,we demonstrate a supramolecule confined approach to reproducibly fabricate perovskite films with an ultrasmooth,electronically homogeneous surface.The assembly of a calixarene capping layer on precursor surface can induce host-vip interactions with solvent molecules to tailor the desolvation kinetics,and initiate the perovskite crystallization from the sharp molecule-precursor interface.These combined effects significantly reduced the spatial variance and extended the processing window of perovskite films.As a result,the standard efficiency deviations of device-to-device and batch-to-batch devices were reduced from 0.64-0.26%to 0.67-0.23%,respectively.In addition,the perovskite films with ultrasmooth top surfaces exhibited photoluminescence quantum yield>10%and surface recombination velocities<100 cm s^(-1)for both interfaces that yielded p-i-n structured solar cells with power conversion efficiency over 25%.展开更多
Human spinal cord organoids(hSCOs)offer a promising platform to study neurotrauma by addressing many limitations of traditional research models.These organoids provide access to human-specific physiological and geneti...Human spinal cord organoids(hSCOs)offer a promising platform to study neurotrauma by addressing many limitations of traditional research models.These organoids provide access to human-specific physiological and genetic mechanisms and can be derived from an individual's somatic cells(e.g.,blood or skin).This enables patient-specific paradigms for precision neurotrauma research,pa rticula rly relevant to the over 300,000 people in the United States living with chronic effects of spinal cord injury(SCI).展开更多
The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly sum marized here, besides, we review the current research on ionic and electrical conduction in elect...The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly sum marized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today's LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs.展开更多
We review the recent discoveries of exotic phenomena in graphene,especially superconductivity.It has been theoretically suggested for more than one decade that superconductivity may emerge in doped graphene-based mate...We review the recent discoveries of exotic phenomena in graphene,especially superconductivity.It has been theoretically suggested for more than one decade that superconductivity may emerge in doped graphene-based materials.For single-layer pristine graphene,there are theoretical predictions that spin-singlet d+id pairing superconductivity is present when the filling is around the Dirac point.If the Fermi level is doped to the Van Hove singularity where the density of states diverges,then unconventional superconductivity with other pairing symmetry would appear.However,the experimental perspective was a bit disappointing.Despite extensive experimental efforts,superconductivity was not found in monolayer graphene.Recently,unconventional superconductivity was found in magic-angle twisted bilayer graphene.Superconductivity was also found in ABC stacked trilayer graphene and other systems.In this article,we review the unique properties of superconducting states in graphene,experimentally controlling the superconductivity in twisted bilayer graphene,as well as a gate-tunable Mott insulator,and the superconductivity in trilayer graphene.These discoveries have attracted the attention of a large number of physicists.The study of the electronic correlated states in twisted multilayer graphene serves as a smoking gun in recent condensed matter physics.展开更多
The unified processing and research of multiple network models are implemented,and a new theoretical advance has been made,which sets up two new theorems on evaluating the exact electrical characteristics(potential an...The unified processing and research of multiple network models are implemented,and a new theoretical advance has been made,which sets up two new theorems on evaluating the exact electrical characteristics(potential and resistance)of the complex m×n resistor networks by the recursion-transform method with potential parameters,and applies to a variety of different types of lattice structure with arbitrary boundaries such as the nonregular m×n rectangular networks and the nonregular m×n cylindrical networks.Our research gives the analytical solutions of electrical characteristics of the complex networks(finite,semi-infinite and infinite),which has not been solved before.As applications of the theorems,a series of analytical solutions of potential and resistance of the complex resistor networks are discovered.展开更多
In this review paper on heavy ion inertial fusion(HIF),the state-of-the-art scientific results are presented and discussed on the HIF physics,including physics of the heavy ion beam(HIB)transport in a fusion reactor,t...In this review paper on heavy ion inertial fusion(HIF),the state-of-the-art scientific results are presented and discussed on the HIF physics,including physics of the heavy ion beam(HIB)transport in a fusion reactor,the HIBs-ion illumination on a direct-drive fuel target,the fuel target physics,the uniformity of the HIF target implosion,the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion.The HIB has remarkable preferable features to release the fusion energy in inertial fusion:in particle accelerators HIBs are generated with a high driver efficiency of~30%-40%,and the HIB ions deposit their energy inside of materials.Therefore,a requirement for the fusion target energy gain is relatively low,that would be~50-70 to operate a HIF fusion reactor with the standard energy output of 1 GWof electricity.The HIF reactor operation frequency would be~10-15 Hz or so.Several-MJ HIBs illuminate a fusion fuel target,and the fuel target is imploded to about a thousand times of the solid density.Then the DT fuel is ignited and burned.The HIB ion deposition range is defined by the HIB ions stopping length,which would be~1 mm or so depending on the material.Therefore,a relatively large density-scale length appears in the fuel target material.One of the critical issues in inertial fusion would be a spherically uniform target compression,which would be degraded by a non-uniform implosion.The implosion non-uniformity would be introduced by the Rayleigh-Taylor(R-T)instability,and the large densitygradient-scale length helps to reduce the R-T growth rate.On the other hand,the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature:normally about 300 eV or so is realized in the energy absorption region,and that a direct-drive target would be appropriate in HIF.In addition,the HIB accelerators are operated repetitively and stably.The precise control of the HIB axis manipulation is also realized in the HIF accelerator,and the HIB wobbling motion may give another tool to smooth the HIB illumination non-uniformity.The key issues in HIF physics are also discussed and presented in the paper.展开更多
Neutron scattering, with its ability to measure the crystal structure, the magnetic order, and the structural and magnetic excitations, plays an active role in investigating various families of Fe-based high-Tc superc...Neutron scattering, with its ability to measure the crystal structure, the magnetic order, and the structural and magnetic excitations, plays an active role in investigating various families of Fe-based high-Tc superconductors. Three different types of antiferromagnetic orders have been discovered in the Fe plane, but two of them cannot be explained by the spin-density-wave (SDW) mechanism of nesting Fermi surfaces. Noticing the close relation between antiferromagnetic order and lattice distortion in orbital ordering from previous studies on manganites and other oxides, we have advocated orbital ordering as the underlying common mechanism for the structural and antiferromagnetic transitions in the 1111, 122, and 11 parent compounds. We observe the coexistence of antiferromagnetic order and superconductivity in the (Ba,K)Fe2As2 system, when its phase separation is generally accepted. Optimal Tc is proposed to be controlled by the local FeAs4 tetrahedron from our investigation on the 1111 materials. The Bloch phase coherence of the Fermi liquid is found crucial to the occurrence of bulk superconductivity in iron chalcogenides of both the 11 and the 245 families. Iron chalcogenides carry a larger staggered magnetic moment (〉 2 tB/Fe) than that in iron pnictides (〈 1 .B/Fe) in the antiferromagnetic order. Normal state magnetic excitations in the 11 superconductor are of the itinerant nature while in the 245 superconductor the spin-waves of localized moments. The observation of superconducting resonance peak provides a crucial piece of information in current deliberation of the pairing symmetry in Fe-based superconductors.展开更多
We indicate that the random aperiodic oscillation of the gluon distributions in a modified Balitsky -Fadin-Kurae- Lipatov (BFKL) equation has positive Lyapunov exponents. This first example of chaos in QCD evolution...We indicate that the random aperiodic oscillation of the gluon distributions in a modified Balitsky -Fadin-Kurae- Lipatov (BFKL) equation has positive Lyapunov exponents. This first example of chaos in QCD evolution equations raises the sudden disappearance of the gluon distributions at a critical small value of the Bjorken variable x and may stop the increase of the new particle events in an ultra high energy hadron collider.展开更多
In addition to non-radiative guided modes, two-dimensional photonic-crystal slabs support guided resonant ones which can radiate into free space. From the polarization states of these guided resonances, a polarization...In addition to non-radiative guided modes, two-dimensional photonic-crystal slabs support guided resonant ones which can radiate into free space. From the polarization states of these guided resonances, a polarization field on a photonic band can be constructed in momentum space. Momentum-space polarization fields display complicated configurations and patterns with different types of polarization singularities inside, shedding new light on the manipulations of light flows.In this review, we summarize the recent research progress on momentum-space polarization fields and singularities in two-dimensional photonic-crystal slabs, focusing on their unique optical properties and potential applications as well.展开更多
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off...The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.展开更多
基金King Abdullah University of Science and Technol-ogy(KAUST)for supporting this research and the Seismic Wave Anal-ysis group for the supportive and encouraging environment.
文摘Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12350404 and 12174066)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302600)+1 种基金the National Key Research and Development Program of China(Grant No.2019YFA0308404)the Science and Technology Commission of Shanghai Municipality(Grant Nos.23JC1400600 and 2019SHZDZX01)。
文摘Moirésystems have emerged as an ideal platform for exploring interaction effects and correlated states.However,most of the experimental systems are based on either triangular or honeycomb lattices.In this study,based on the self-consistent Hartree–Fock calculation,we investigate the phase diagram of the kagomélattice in a recently discovered system with two degenerateΓvalley orbitals and strong spin–orbit coupling.By focusing on the filling factors of 1/2,1/3 and 2/3,we identify various symmetry-breaking states by adjusting the screening length and dielectric constant.At the half filling,we discover that the spin–orbit coupling induces Dzyaloshinskii–Moriya interaction and stabilizes a classical magnetic state with 120°ordering.Additionally,we observe a transition to a ferromagnetic state with out-of-plane ordering.In the case of 1/3 filling,the system is ferromagnetically ordered due to the lattice frustration.Furthermore,for 2/3 filling,the system exhibits a pinned droplet state and a 120°magnetic ordered state at weak and immediate coupling strengths,respectively.For the strong coupling case,when dealing with non-integer filling,the system is always charge ordered with sublattice polarization.Our study serves as a starting point for exploring the effects of correlation in moirékagomésystems.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1404400)the National Natural Science Foundation of China(Grant No.12125504 and 12305050)+2 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ25A050001)the Hundred Talents Program of the Chinese Academy of Sciencesthe Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.23KJB140017)。
文摘We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interplay between the coherent couplings between quantum dots,the magnetic flux,and the dissipation due to the tunnel coupling with the reservoirs.
基金supported by the the National Key R&D Program of China(Grant Nos.2022YFA1604900 and 2023YFA1606703)the National Natural Science Foundation of China(Grant Nos.12025501,12435007,12405133,and 12347180)+1 种基金China Postdoctoral Science Foundation(Grant No.2023M740189)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20233381).
文摘Hypernuclei,nuclei containing one or more hyperons,serve as unique laboratories for probing the non-perturbative quantum chromodynamics(QCD).Recent progress in hypernuclear physics,driven by advanced experimental techniques and theoretical innovations,is briefly reviewed with a focus on key findings and unresolved challenges,such as the precise determination of the hypertriton binding energy,investigations of charge symmetry breaking in mirror hypernuclei,and the search for exotic systems,including the neutral nnΛstate.Experimental breakthroughs,including invariant-mass analyses and femtoscopy studies in heavy-ion collisions,as well as high-resolutionγ-spectroscopy,have enabled precise studies of light hypernuclei and offered critical insights into the hyperon–nucleon interaction.Theoretical progress,including ab initio calculations based on chiral effective field theory and lattice QCD,has further enhanced our understanding of hyperon–nucleon and hyperon–hyperon interactions.
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
文摘BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.
基金Funded by the National Natural Science Foundation of China(No.52371169)。
文摘We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and tested using X-ray diffraction(XRD),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM),respectively.The results demonstrate that the coercivity of CoPt nanoparticles can be effectively controlled by adjusting the atomic ratio of Co and Pt in the samples.Among the compositions studied,the Co_(45)Pt_(55)sample synthesized by the sol-gel method exhibits smaller grain size and a coercivity as high as 6.65×10^(5) A/m is achieved.The morphology and microstructure of the nanoparticles were analyzed by TEM images,indicating that a slight excess of Pt can effectively enhance the coercivity of CoPt nanoparticles.
基金financially supported by National Natural Science Foundation of China(No.22302155)the Fundamental Research Funds of the Center Universities(No.D5000240188)the research program of ZJUT(YJY-ZS-20240001)。
文摘Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.
基金supported by the Swedish Research Council(Vetenskapsradet,Grant No.202203129)the Project of Youth Science and Technology Fund of Gansu Province(Grant No.24JRRA439)partially funded by the Swedish Research Council(Vetenskapsradet,Grant No.2022-06725)。
文摘This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.
基金financially supported by the National Natural Science Foundation of China(22379044,22472053)the Science and Technology Commission of Shanghai Municipality(23520710700)+6 种基金the Key Program of the National Natural Science Foundation of China(22239001)the Shanghai Pilot Program for Basic Research(22TQ1400100-5)the ShanghaiMunicipal Natural Science Foundation(25ZR1401081)the Fundamental Research Funds for the Central Universities(JKD01251505,JKVD1251041)the Postdoctoral Fellowship Program of CPSF(GZC20250071)the Shanghai Engineering Research Center of Hierarchical Nanomaterials(18DZ2252400)the Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission)。
文摘The solution processibility of perovskites provides a costeffective and high-throughput route for fabricating state-of-the-art solar cells.However,the fast kinetics of precursor-to-perovskite transformation is susceptible to processing conditions,resulting in an uncontrollable variance in device performance.Here,we demonstrate a supramolecule confined approach to reproducibly fabricate perovskite films with an ultrasmooth,electronically homogeneous surface.The assembly of a calixarene capping layer on precursor surface can induce host-vip interactions with solvent molecules to tailor the desolvation kinetics,and initiate the perovskite crystallization from the sharp molecule-precursor interface.These combined effects significantly reduced the spatial variance and extended the processing window of perovskite films.As a result,the standard efficiency deviations of device-to-device and batch-to-batch devices were reduced from 0.64-0.26%to 0.67-0.23%,respectively.In addition,the perovskite films with ultrasmooth top surfaces exhibited photoluminescence quantum yield>10%and surface recombination velocities<100 cm s^(-1)for both interfaces that yielded p-i-n structured solar cells with power conversion efficiency over 25%.
基金supported by the Belle Carnell Regenerative Neurorehabilitation Fundthe National Institutes of Health(R01NS113935 to CKF)。
文摘Human spinal cord organoids(hSCOs)offer a promising platform to study neurotrauma by addressing many limitations of traditional research models.These organoids provide access to human-specific physiological and genetic mechanisms and can be derived from an individual's somatic cells(e.g.,blood or skin).This enables patient-specific paradigms for precision neurotrauma research,pa rticula rly relevant to the over 300,000 people in the United States living with chronic effects of spinal cord injury(SCI).
基金supported by the National High Technology Research and Development Program of China(Grant No.2015AA034201)the National Natural Science Foundation of China(Grant Nos.11234013 and 11264014)+2 种基金the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20133ACB21010 and20142BAB212002)the Foundation of Jiangxi Education Committee,China(Grant Nos.GJJ14254 and KJLD14024)supported by the"Gan-po talent 555"Project of Jiangxi Province,China
文摘The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly sum marized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today's LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774033 and 11974049)Beijing Natural Science Foundation,China(Grant No.1192011).
文摘We review the recent discoveries of exotic phenomena in graphene,especially superconductivity.It has been theoretically suggested for more than one decade that superconductivity may emerge in doped graphene-based materials.For single-layer pristine graphene,there are theoretical predictions that spin-singlet d+id pairing superconductivity is present when the filling is around the Dirac point.If the Fermi level is doped to the Van Hove singularity where the density of states diverges,then unconventional superconductivity with other pairing symmetry would appear.However,the experimental perspective was a bit disappointing.Despite extensive experimental efforts,superconductivity was not found in monolayer graphene.Recently,unconventional superconductivity was found in magic-angle twisted bilayer graphene.Superconductivity was also found in ABC stacked trilayer graphene and other systems.In this article,we review the unique properties of superconducting states in graphene,experimentally controlling the superconductivity in twisted bilayer graphene,as well as a gate-tunable Mott insulator,and the superconductivity in trilayer graphene.These discoveries have attracted the attention of a large number of physicists.The study of the electronic correlated states in twisted multilayer graphene serves as a smoking gun in recent condensed matter physics.
基金Project supported by a grant from the Natural Science Foundation of Jiangsu Province(No.BK20161278).
文摘The unified processing and research of multiple network models are implemented,and a new theoretical advance has been made,which sets up two new theorems on evaluating the exact electrical characteristics(potential and resistance)of the complex m×n resistor networks by the recursion-transform method with potential parameters,and applies to a variety of different types of lattice structure with arbitrary boundaries such as the nonregular m×n rectangular networks and the nonregular m×n cylindrical networks.Our research gives the analytical solutions of electrical characteristics of the complex networks(finite,semi-infinite and infinite),which has not been solved before.As applications of the theorems,a series of analytical solutions of potential and resistance of the complex resistor networks are discovered.
基金supported by JSPS,MEXT,CORE(Center for Optical Research and Education,Utsunomiya University),ASHULA,ILE/Osaka University,and CDI(Cre-ative Department for Innovation,Utsunomiya University).
文摘In this review paper on heavy ion inertial fusion(HIF),the state-of-the-art scientific results are presented and discussed on the HIF physics,including physics of the heavy ion beam(HIB)transport in a fusion reactor,the HIBs-ion illumination on a direct-drive fuel target,the fuel target physics,the uniformity of the HIF target implosion,the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion.The HIB has remarkable preferable features to release the fusion energy in inertial fusion:in particle accelerators HIBs are generated with a high driver efficiency of~30%-40%,and the HIB ions deposit their energy inside of materials.Therefore,a requirement for the fusion target energy gain is relatively low,that would be~50-70 to operate a HIF fusion reactor with the standard energy output of 1 GWof electricity.The HIF reactor operation frequency would be~10-15 Hz or so.Several-MJ HIBs illuminate a fusion fuel target,and the fuel target is imploded to about a thousand times of the solid density.Then the DT fuel is ignited and burned.The HIB ion deposition range is defined by the HIB ions stopping length,which would be~1 mm or so depending on the material.Therefore,a relatively large density-scale length appears in the fuel target material.One of the critical issues in inertial fusion would be a spherically uniform target compression,which would be degraded by a non-uniform implosion.The implosion non-uniformity would be introduced by the Rayleigh-Taylor(R-T)instability,and the large densitygradient-scale length helps to reduce the R-T growth rate.On the other hand,the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature:normally about 300 eV or so is realized in the energy absorption region,and that a direct-drive target would be appropriate in HIF.In addition,the HIB accelerators are operated repetitively and stably.The precise control of the HIB axis manipulation is also realized in the HIF accelerator,and the HIB wobbling motion may give another tool to smooth the HIB illumination non-uniformity.The key issues in HIF physics are also discussed and presented in the paper.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB921700 and 2011CBA00112)the National Natural Science Foundation of China(Grant Nos.11034012 and 11190024)
文摘Neutron scattering, with its ability to measure the crystal structure, the magnetic order, and the structural and magnetic excitations, plays an active role in investigating various families of Fe-based high-Tc superconductors. Three different types of antiferromagnetic orders have been discovered in the Fe plane, but two of them cannot be explained by the spin-density-wave (SDW) mechanism of nesting Fermi surfaces. Noticing the close relation between antiferromagnetic order and lattice distortion in orbital ordering from previous studies on manganites and other oxides, we have advocated orbital ordering as the underlying common mechanism for the structural and antiferromagnetic transitions in the 1111, 122, and 11 parent compounds. We observe the coexistence of antiferromagnetic order and superconductivity in the (Ba,K)Fe2As2 system, when its phase separation is generally accepted. Optimal Tc is proposed to be controlled by the local FeAs4 tetrahedron from our investigation on the 1111 materials. The Bloch phase coherence of the Fermi liquid is found crucial to the occurrence of bulk superconductivity in iron chalcogenides of both the 11 and the 245 families. Iron chalcogenides carry a larger staggered magnetic moment (〉 2 tB/Fe) than that in iron pnictides (〈 1 .B/Fe) in the antiferromagnetic order. Normal state magnetic excitations in the 11 superconductor are of the itinerant nature while in the 245 superconductor the spin-waves of localized moments. The observation of superconducting resonance peak provides a crucial piece of information in current deliberation of the pairing symmetry in Fe-based superconductors.
基金Supported by National Natural Science Foundations of China under Grant Nos 10475028 and 10875044.
文摘We indicate that the random aperiodic oscillation of the gluon distributions in a modified Balitsky -Fadin-Kurae- Lipatov (BFKL) equation has positive Lyapunov exponents. This first example of chaos in QCD evolution equations raises the sudden disappearance of the gluon distributions at a critical small value of the Bjorken variable x and may stop the increase of the new particle events in an ultra high energy hadron collider.
基金supported by the National Natural Science Foundation of China(Grant Nos.11727811 and 91963212)the National Key Basic Research Program of China(Grant No.2018YFA0306201)Science and Technology Commission of Shanghai Municipality(Grant Nos.19XD1434600,2019SHZDZX01,19DZ2253000,and 20501110500)。
文摘In addition to non-radiative guided modes, two-dimensional photonic-crystal slabs support guided resonant ones which can radiate into free space. From the polarization states of these guided resonances, a polarization field on a photonic band can be constructed in momentum space. Momentum-space polarization fields display complicated configurations and patterns with different types of polarization singularities inside, shedding new light on the manipulations of light flows.In this review, we summarize the recent research progress on momentum-space polarization fields and singularities in two-dimensional photonic-crystal slabs, focusing on their unique optical properties and potential applications as well.
基金supported by the IITP(Institute of Information & Communications Technology Planning & Evaluation)-ITRC(Information Technology Research Center) grant funded by the Korea government(Ministry of Science and ICT) (IITP-2025-RS-2024-00437191, and RS-2025-02303505)partly supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education. (No. 2022R1A6C101A774)the Deanship of Research and Graduate Studies at King Khalid University, Saudi Arabia, through Large Research Project under grant number RGP-2/527/46
文摘The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.