Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the...Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training.展开更多
Moirésystems have emerged as an ideal platform for exploring interaction effects and correlated states.However,most of the experimental systems are based on either triangular or honeycomb lattices.In this study,b...Moirésystems have emerged as an ideal platform for exploring interaction effects and correlated states.However,most of the experimental systems are based on either triangular or honeycomb lattices.In this study,based on the self-consistent Hartree–Fock calculation,we investigate the phase diagram of the kagomélattice in a recently discovered system with two degenerateΓvalley orbitals and strong spin–orbit coupling.By focusing on the filling factors of 1/2,1/3 and 2/3,we identify various symmetry-breaking states by adjusting the screening length and dielectric constant.At the half filling,we discover that the spin–orbit coupling induces Dzyaloshinskii–Moriya interaction and stabilizes a classical magnetic state with 120°ordering.Additionally,we observe a transition to a ferromagnetic state with out-of-plane ordering.In the case of 1/3 filling,the system is ferromagnetically ordered due to the lattice frustration.Furthermore,for 2/3 filling,the system exhibits a pinned droplet state and a 120°magnetic ordered state at weak and immediate coupling strengths,respectively.For the strong coupling case,when dealing with non-integer filling,the system is always charge ordered with sublattice polarization.Our study serves as a starting point for exploring the effects of correlation in moirékagomésystems.展开更多
We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interpl...We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interplay between the coherent couplings between quantum dots,the magnetic flux,and the dissipation due to the tunnel coupling with the reservoirs.展开更多
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s...To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.展开更多
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact...Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.展开更多
By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac...By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac CP violating phase appeared as an unknown quantity. The equations of motion were separately derived for each of the three possible transitions for flavor-neutrino oscillations. Two roots of those equations were obtained in the form of two formulas for the Dirac CP violating phase with opposite signs. In the mathematical sense, the connection between those formulas was established in order to maintain the continuous process of oscillation of three neutrinos. This made it possible to calculate the numerical value for the Dirac CP violating phase, the Jarlskog invariant and to write the general form of the PMNS mixing matrix in the final form in which all its elements are defined with explicit numerical values.展开更多
Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic...Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic rays (CRs) is provided in the framework of the fine tuning of the involved parameters. A theoretical image for the overall diffusion of CRs in galactic coordinates is provided.展开更多
Two existing solutions for the diffusion of cosmic rays (CRs) are analyzed. The first one is a well-known solution in 3D over an infinite spatial domain and the second one is a 1D solution with an exponential decay in...Two existing solutions for the diffusion of cosmic rays (CRs) are analyzed. The first one is a well-known solution in 3D over an infinite spatial domain and the second one is a 1D solution with an exponential decay initial profile over an infinite spatial domain. For each solution, the temporal evolution of the number of particles at a fixed distance has been analyzed. The anticorrelation between the flux of CRs and the magnetic field at one astronomical unit has been explained by adopting a careful choice of the astrophysical parameters involved.展开更多
One dimensional sub-wavelength gratings,also known as metagratings have attracted enormous attention due to the relatively simpler design configurations with versatile application potentials.In recent times,these meta...One dimensional sub-wavelength gratings,also known as metagratings have attracted enormous attention due to the relatively simpler design configurations with versatile application potentials.In recent times,these metagratings have played crucial roles in terahertz frequency domain to realize several fascinating effects.It has been demonstrated that the terahertz characteristics of these metagratings can be modified by carefully designing the grating geometry along with meticulously tuning the material characteristics.Such variations in grating design have led to enhanced device performances.In addition,suitably designed metagratings are capable of exciting strong evanescent orders that can be exploited in ultrasensitive sensing,optical trapping,non-linearity,etc.Based on the tremendous potentials offered by the planar geometry(ease of fabrication)along with diverse utilities,we have reviewed few representative works pertaining to terahertz metagratings in this article.Hence,we have discussed metagratings based antireflection coating and a polarization beam splitter operating in THz region modelled using simplified model method.Further,we have discussed experimental detection of evanescent waves excited in metagratings utilizing Fourier transformed terahertz spectroscopy(FTTS)technique.FTTS is a unique technique because of its ability of simultaneous detection of propagating and non-propagating orders.Next,we have discussed applications of metagratings in sensing trace amount of analytes.Considering the increasing interests in these one-dimensional artificial subwavelength structures,we believe,our article will be useful for the researchers willing to begin work on terahertz subwavelength gratings.展开更多
The electron microscope provides numerous insights into physics, from demonstrations of fundamental quantummechanical principles to the physics of imaging and materials. It reveals the atomic and electronic structure ...The electron microscope provides numerous insights into physics, from demonstrations of fundamental quantummechanical principles to the physics of imaging and materials. It reveals the atomic and electronic structure of key regionssuch as defects and interfaces. We can learn the underlying physics governing properties, and gain insight into how tosynthesize new materials with improved properties. Some recent advances and possible future directions are discussed.展开更多
Life exists in the universe and therefore the astrophysical properties of the universe must be such that they allow the origin of life. We connect astrobiology and astrophysics via one astrobiological quantity—the pr...Life exists in the universe and therefore the astrophysical properties of the universe must be such that they allow the origin of life. We connect astrobiology and astrophysics via one astrobiological quantity—the probability of the origin of life. We show how this probability, if it is very low, will allow us to answer profound astrophysical questions such as the type of universe we live in, the fate of our universe, whether neutron stars, white and brown dwarfs evaporate and whether protons decay.展开更多
Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely s...Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely small atomic nuclei to explain the evolution of the universe.Owing to the complexity of nucleosynthesis processes and our limited understanding of nuclear physics in astrophysical environments,several critical astrophysical problems remain unsolved.To achieve a better understanding of astrophysics,it is necessary to measure the cross sections of key nuclear reactions with the precision required by astrophysical models.Direct measurement of nuclear reaction cross sections is an important method of investigating how nuclear reactions infuence stellar evolution.Given the challenges involved in measuring the extremely low crosssections of nuclear reactions in the Gamow peak and preparing radioactive targets,indirect methods,such as the transfer reaction,coulomb dissociation,and surrogate ratio methods,have been developed over the past several decades.These are powerful tools in the investigation of,for example,neutron-capture(n,r)reactions with short-lived radioactive isotopes.However,direct measurement is still preferable,such as in the case of reactions involving light and stable nuclei.As an essential part of stellar evolution,these low-energy stable nuclear reactions have been of particular interest in recent years.To overcome the diffculties in measurements near or deeply within the Gamow window,the combination of an underground laboratory and high-exposure accelerator/detector complex is currently the optimal solution.Therefore,underground experiments have emerged as a new and promising direction of research.In addition,to better simulate the stellar environment in the laboratory,research on nuclear physics under laser-driven plasma conditions has gradually become a frontier hotspot.In recent years,the CIAE team conducted a series of distinctive nuclear astrophysics studies,relying on the Jinping Underground Nuclear Astrophysics platform and accelerators in Earth’s surface laboratories,including the Beijing Radioactive Ion beam Facility,as well as other scientifc platforms at home and abroad.This research covered nuclear theories,numerical models,direct measurements,indirect measurements,and other novel approaches,achieving great interdisciplinary research results,with high-level academic publications and signifcant international impacts.This article reviews the above research and predicts future developments.展开更多
Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)iso...Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.展开更多
We identify an S-shaped main-jet axis in the Vela core-collapse supernova remnant(CCSNR)that we attribute to a pair of precessing jets,one of the tens of pairs of jets that exploded the progenitor of Vela according to...We identify an S-shaped main-jet axis in the Vela core-collapse supernova remnant(CCSNR)that we attribute to a pair of precessing jets,one of the tens of pairs of jets that exploded the progenitor of Vela according to the jittering jets explosion mechanism(JJEM).A main-jet axis is a symmetry axis across the CCSNR and through the center.We identify the S-shaped main-jet axis by the high abundance of ejecta elements,oxygen,neon,and magnesium.We bring the number of identified pairs of clumps and ears in Vela to seven,two pairs shaped by the pair of precessing jets that formed the main-jet axis.The pairs and the main-jet axis form the point-symmetric wind-rose structure of Vela.The other five pairs of clumps/ears do not have signatures near the center,only on two opposite sides of the CCSNR.We discuss different possible jet-less shaping mechanisms to form such a point-symmetric morphology and dismiss these processes because they cannot explain the point-symmetric morphology of Vela,the S-shaped high ejecta abundance pattern,and the enormous energy required to shape the S-shaped structure.Our findings strongly support the JJEM and further severely challenge the neutrino-driven explosion mechanism.展开更多
With the advancement of astronomical observation technology,people have a deeper understanding of the formation and evolution of galaxies,but many details of our own Milky Way and other external galaxies are still unk...With the advancement of astronomical observation technology,people have a deeper understanding of the formation and evolution of galaxies,but many details of our own Milky Way and other external galaxies are still unknown.Therefore,by studying the formation and orbital transformation mechanism of satellites,planets and stars,the author puts forward a new theory on the formation and evolution of stars and galaxies,thus revealing the hierarchical structure of galaxies and the formation and evolution laws of main sequence stars,red giants,white dwarfs,black dwarfs,supernovae,neutron stars,black holes and quasars.Some special phenomena in the course of star formation and evolution,such as sunspots,flares,fast radio bursts and gamma-ray bursts,have also been revealed.展开更多
BACKGROUND While existing literature on ischiofemoral impingement syndrome(IFI)predominantly emphasizes surgical interventions or generalized physical therapy approaches,there remains a paucity of evidence regarding s...BACKGROUND While existing literature on ischiofemoral impingement syndrome(IFI)predominantly emphasizes surgical interventions or generalized physical therapy approaches,there remains a paucity of evidence regarding structured,multimodal rehabilitation programs targeting biomechanical deficits in IFI.This case report evaluates the efficacy of a multimodal rehabilitation program addressing a critical gap in conservative management strategies.CASE SUMMARY The patient underwent comprehensive physical and clinical examination,including hip X-ray and magnetic resonance imaging investigations.The patient completed the Musculoskeletal Health Questionnaire(MSK-HQ)and numerical pain rating scale(NPRS).The patient underwent a two-month tailored structured physical therapy intervention and repeated the same assessment afterwards.The patient's substantial reduction in pain,reflected by a significant decrease in the patient’s NPRS score from 9 to 3 points,signifies a positive clinical response.This outcome,coupled with the significant improvement in the patient's health-related quality of life according to the MSK-HQ score,which increased from 12 to 48 points,underscores the success of our research.CONCLUSION The study highlights the importance of a comprehensive approach to diagnosing and managing IFI,combining clinical assessment with imaging and implementing a multimodal rehabilitation program for optimal outcomes.展开更多
基金King Abdullah University of Science and Technol-ogy(KAUST)for supporting this research and the Seismic Wave Anal-ysis group for the supportive and encouraging environment.
文摘Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12350404 and 12174066)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302600)+1 种基金the National Key Research and Development Program of China(Grant No.2019YFA0308404)the Science and Technology Commission of Shanghai Municipality(Grant Nos.23JC1400600 and 2019SHZDZX01)。
文摘Moirésystems have emerged as an ideal platform for exploring interaction effects and correlated states.However,most of the experimental systems are based on either triangular or honeycomb lattices.In this study,based on the self-consistent Hartree–Fock calculation,we investigate the phase diagram of the kagomélattice in a recently discovered system with two degenerateΓvalley orbitals and strong spin–orbit coupling.By focusing on the filling factors of 1/2,1/3 and 2/3,we identify various symmetry-breaking states by adjusting the screening length and dielectric constant.At the half filling,we discover that the spin–orbit coupling induces Dzyaloshinskii–Moriya interaction and stabilizes a classical magnetic state with 120°ordering.Additionally,we observe a transition to a ferromagnetic state with out-of-plane ordering.In the case of 1/3 filling,the system is ferromagnetically ordered due to the lattice frustration.Furthermore,for 2/3 filling,the system exhibits a pinned droplet state and a 120°magnetic ordered state at weak and immediate coupling strengths,respectively.For the strong coupling case,when dealing with non-integer filling,the system is always charge ordered with sublattice polarization.Our study serves as a starting point for exploring the effects of correlation in moirékagomésystems.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1404400)the National Natural Science Foundation of China(Grant No.12125504 and 12305050)+2 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ25A050001)the Hundred Talents Program of the Chinese Academy of Sciencesthe Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.23KJB140017)。
文摘We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interplay between the coherent couplings between quantum dots,the magnetic flux,and the dissipation due to the tunnel coupling with the reservoirs.
基金This work is funded by National Natural Science Foundation of China(Nos.42202292,42141011)the Program for Jilin University(JLU)Science and Technology Innovative Research Team(No.2019TD-35).The authors would also like to thank the reviewers and editors whose critical comments are very helpful in preparing this article.
文摘To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.
基金Project supported by the National Natural Science Foundation of China(Grant No.12374223)Shenzhen Science and Technology Program(Grant No.20231117151322001).
文摘Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.
文摘By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac CP violating phase appeared as an unknown quantity. The equations of motion were separately derived for each of the three possible transitions for flavor-neutrino oscillations. Two roots of those equations were obtained in the form of two formulas for the Dirac CP violating phase with opposite signs. In the mathematical sense, the connection between those formulas was established in order to maintain the continuous process of oscillation of three neutrinos. This made it possible to calculate the numerical value for the Dirac CP violating phase, the Jarlskog invariant and to write the general form of the PMNS mixing matrix in the final form in which all its elements are defined with explicit numerical values.
文摘Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic rays (CRs) is provided in the framework of the fine tuning of the involved parameters. A theoretical image for the overall diffusion of CRs in galactic coordinates is provided.
文摘Two existing solutions for the diffusion of cosmic rays (CRs) are analyzed. The first one is a well-known solution in 3D over an infinite spatial domain and the second one is a 1D solution with an exponential decay initial profile over an infinite spatial domain. For each solution, the temporal evolution of the number of particles at a fixed distance has been analyzed. The anticorrelation between the flux of CRs and the magnetic field at one astronomical unit has been explained by adopting a careful choice of the astrophysical parameters involved.
文摘One dimensional sub-wavelength gratings,also known as metagratings have attracted enormous attention due to the relatively simpler design configurations with versatile application potentials.In recent times,these metagratings have played crucial roles in terahertz frequency domain to realize several fascinating effects.It has been demonstrated that the terahertz characteristics of these metagratings can be modified by carefully designing the grating geometry along with meticulously tuning the material characteristics.Such variations in grating design have led to enhanced device performances.In addition,suitably designed metagratings are capable of exciting strong evanescent orders that can be exploited in ultrasensitive sensing,optical trapping,non-linearity,etc.Based on the tremendous potentials offered by the planar geometry(ease of fabrication)along with diverse utilities,we have reviewed few representative works pertaining to terahertz metagratings in this article.Hence,we have discussed metagratings based antireflection coating and a polarization beam splitter operating in THz region modelled using simplified model method.Further,we have discussed experimental detection of evanescent waves excited in metagratings utilizing Fourier transformed terahertz spectroscopy(FTTS)technique.FTTS is a unique technique because of its ability of simultaneous detection of propagating and non-propagating orders.Next,we have discussed applications of metagratings in sensing trace amount of analytes.Considering the increasing interests in these one-dimensional artificial subwavelength structures,we believe,our article will be useful for the researchers willing to begin work on terahertz subwavelength gratings.
文摘The electron microscope provides numerous insights into physics, from demonstrations of fundamental quantummechanical principles to the physics of imaging and materials. It reveals the atomic and electronic structure of key regionssuch as defects and interfaces. We can learn the underlying physics governing properties, and gain insight into how tosynthesize new materials with improved properties. Some recent advances and possible future directions are discussed.
文摘Life exists in the universe and therefore the astrophysical properties of the universe must be such that they allow the origin of life. We connect astrobiology and astrophysics via one astrobiological quantity—the probability of the origin of life. We show how this probability, if it is very low, will allow us to answer profound astrophysical questions such as the type of universe we live in, the fate of our universe, whether neutron stars, white and brown dwarfs evaporate and whether protons decay.
基金National Natural Science Foundation of China(Nos.12435010)National Key R&D Program of China(No.2022YFA1602301)。
文摘Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely small atomic nuclei to explain the evolution of the universe.Owing to the complexity of nucleosynthesis processes and our limited understanding of nuclear physics in astrophysical environments,several critical astrophysical problems remain unsolved.To achieve a better understanding of astrophysics,it is necessary to measure the cross sections of key nuclear reactions with the precision required by astrophysical models.Direct measurement of nuclear reaction cross sections is an important method of investigating how nuclear reactions infuence stellar evolution.Given the challenges involved in measuring the extremely low crosssections of nuclear reactions in the Gamow peak and preparing radioactive targets,indirect methods,such as the transfer reaction,coulomb dissociation,and surrogate ratio methods,have been developed over the past several decades.These are powerful tools in the investigation of,for example,neutron-capture(n,r)reactions with short-lived radioactive isotopes.However,direct measurement is still preferable,such as in the case of reactions involving light and stable nuclei.As an essential part of stellar evolution,these low-energy stable nuclear reactions have been of particular interest in recent years.To overcome the diffculties in measurements near or deeply within the Gamow window,the combination of an underground laboratory and high-exposure accelerator/detector complex is currently the optimal solution.Therefore,underground experiments have emerged as a new and promising direction of research.In addition,to better simulate the stellar environment in the laboratory,research on nuclear physics under laser-driven plasma conditions has gradually become a frontier hotspot.In recent years,the CIAE team conducted a series of distinctive nuclear astrophysics studies,relying on the Jinping Underground Nuclear Astrophysics platform and accelerators in Earth’s surface laboratories,including the Beijing Radioactive Ion beam Facility,as well as other scientifc platforms at home and abroad.This research covered nuclear theories,numerical models,direct measurements,indirect measurements,and other novel approaches,achieving great interdisciplinary research results,with high-level academic publications and signifcant international impacts.This article reviews the above research and predicts future developments.
基金supported by the NIH grants,R01 NS111801(to ZGZ)American Heart Association 16SDG29860003(to YZ)。
文摘Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.
基金A grant from the Pazy Foundation supported this research
文摘We identify an S-shaped main-jet axis in the Vela core-collapse supernova remnant(CCSNR)that we attribute to a pair of precessing jets,one of the tens of pairs of jets that exploded the progenitor of Vela according to the jittering jets explosion mechanism(JJEM).A main-jet axis is a symmetry axis across the CCSNR and through the center.We identify the S-shaped main-jet axis by the high abundance of ejecta elements,oxygen,neon,and magnesium.We bring the number of identified pairs of clumps and ears in Vela to seven,two pairs shaped by the pair of precessing jets that formed the main-jet axis.The pairs and the main-jet axis form the point-symmetric wind-rose structure of Vela.The other five pairs of clumps/ears do not have signatures near the center,only on two opposite sides of the CCSNR.We discuss different possible jet-less shaping mechanisms to form such a point-symmetric morphology and dismiss these processes because they cannot explain the point-symmetric morphology of Vela,the S-shaped high ejecta abundance pattern,and the enormous energy required to shape the S-shaped structure.Our findings strongly support the JJEM and further severely challenge the neutrino-driven explosion mechanism.
文摘With the advancement of astronomical observation technology,people have a deeper understanding of the formation and evolution of galaxies,but many details of our own Milky Way and other external galaxies are still unknown.Therefore,by studying the formation and orbital transformation mechanism of satellites,planets and stars,the author puts forward a new theory on the formation and evolution of stars and galaxies,thus revealing the hierarchical structure of galaxies and the formation and evolution laws of main sequence stars,red giants,white dwarfs,black dwarfs,supernovae,neutron stars,black holes and quasars.Some special phenomena in the course of star formation and evolution,such as sunspots,flares,fast radio bursts and gamma-ray bursts,have also been revealed.
文摘BACKGROUND While existing literature on ischiofemoral impingement syndrome(IFI)predominantly emphasizes surgical interventions or generalized physical therapy approaches,there remains a paucity of evidence regarding structured,multimodal rehabilitation programs targeting biomechanical deficits in IFI.This case report evaluates the efficacy of a multimodal rehabilitation program addressing a critical gap in conservative management strategies.CASE SUMMARY The patient underwent comprehensive physical and clinical examination,including hip X-ray and magnetic resonance imaging investigations.The patient completed the Musculoskeletal Health Questionnaire(MSK-HQ)and numerical pain rating scale(NPRS).The patient underwent a two-month tailored structured physical therapy intervention and repeated the same assessment afterwards.The patient's substantial reduction in pain,reflected by a significant decrease in the patient’s NPRS score from 9 to 3 points,signifies a positive clinical response.This outcome,coupled with the significant improvement in the patient's health-related quality of life according to the MSK-HQ score,which increased from 12 to 48 points,underscores the success of our research.CONCLUSION The study highlights the importance of a comprehensive approach to diagnosing and managing IFI,combining clinical assessment with imaging and implementing a multimodal rehabilitation program for optimal outcomes.