Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(F...Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations.展开更多
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri...The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.展开更多
It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a relian...It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a reliance on methods that resemble divination rather than sound scientific inquiry. Despite efforts to understand seismic phenomena over the past three centuries [1], progress in seismology has been perceived as somewhat stagnant. Criticisms have been raised about certain theories, such as Mr. Reid’s Elastic Recoil theory from 1910 [2], and its purported advancements in comprehending seismic processes. While acknowledging various perspectives on this matter [3]-[7], it is important to reflect on the historical context and potential limitations in our understanding. Addressing concerns raised within the discipline involves examining educational practices and fostering a rigorous academic environment to promote scientific excellence. This article aims to explore the underlying factors contributing to the current state of seismology, offering insights into overcoming challenges and fostering advancements that benefit the scientific community and society as a whole.展开更多
Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC chan...Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion.展开更多
Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fau...Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fault data along the Kuhbanan fault zone in southeastern Iran by applying the boxcounting method and observing the changes in Coulomb stress and tried to find the potential triggering parts.The entire region was divided into 16subzones with the box-counting method,and then the fractal dimension(D)in each zone was calculated.The analysis of the fractal dimension for active faults and earthquake epicenters along with the seismicity parameter(b)and their ratio in the Kuhbanan region indicates an imbalance between seismic fractals and faults.This finding suggests that the area may have the potential for future earthquakes or hidden faults.In conjunction with b-value and changes in Coulomb stress change,D-value analysis reveals intense tectonic activity and stress accumulation,particularly within the Ravar,Zarand,and Kianshahr sections.It may be considered a potential location for future earthquakes.The changes in Coulomb stress resulting from the 2005Dahuieh earthquake have also placed this region within the stress accumulation zone,potentially triggering the mentioned areas.This integrative approach,backed by historical earthquake data,highlights the impact of fault geometry and stress dynamics,offering an enhanced framework for earthquake forecasting and seismic risk mitigation applicable to other tectonically active areas within the Iranian plateau.展开更多
Distributed acoustic sensing(DAS)is increasingly used in seismic exploration owing to its wide frequency range,dense sampling and real-time monitoring.DAS radiation patterns help to understand angle response of DAS re...Distributed acoustic sensing(DAS)is increasingly used in seismic exploration owing to its wide frequency range,dense sampling and real-time monitoring.DAS radiation patterns help to understand angle response of DAS records and improve the quality of inversion and imaging.In this paper,we solve the 3D vertical transverse isotropic(VTI)Christoffel equation and obtain the analytical,frst-order,and zero-order Taylor expansion solutions that represent P-,SV-,and SH-wave phase velocities and polarization vectors.These analytical and approximated solutions are used to build the P/S plane-wave expression identical to the far-feld term of seismic wave,from which the strain rate expressions are derived and DAS radiation patterns are thus extracted for anisotropic P/S waves.We observe that the gauge length and phase angle terms control the radiating intensity of DAS records.Additionally,the Bond transformation is adopted to derive the DAS radiation patterns in title transverse isotropic(TTI)media,which exhibits higher complexity than that of VTI media.Several synthetic examples demonstrate the feasibility and effectiveness of our theory.展开更多
The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake....The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought.展开更多
Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network ...Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network of China used by WANG, et al. We discussed the relation of Pn velocity variation to Moho depth, Earths heat flow, distribution of Cenozoic volcanic rock and the result of rock experiment under high pressure and high temperature. The result of quantitative analysis indicates that Pn velocity is positively correlated with the crust thickness and negatively correlated with the Earths heat flow. Two linear regression equations, one between Pn velocity and crust thickness, and the other between Pn velocity and heat flow, were obtained. The rate of variation of Pn veloc-ity vP with pressure P, Pv/p, estimated from the velocity variation with crust thickness Hv/p, is close to the result obtained from the rock experiment under high pressure and high temperature. If the effect of crust thick-ness on Pn velocity is deducted from the velocity variation, then the low Pn velocity beneath Qinghai-Xizang pla-teau is more notable. The low Pn velocity regions well agree with the Cenozoic volcanic rock. In the several re-gions with significant anisotropy, the direction of fast Pn velocity is consistent with the orientation of maximum principal crustal compressive stress, and also with the direction of present-day crustal movement. It indicates that the fast Pn velocity direction may be related to the deformation or flow of top mantle material along the direction of maximum pressure.展开更多
Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequen...Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequent after- shocks. The results show that the spatial distribution patterns of the positive region of dynamic stress peak value and static stress peak value are similarly asymmetric, which are basically identical with distribution features of aftershock. The dynamic stress peak value and the static stress in the positive region are more than 0.1 MPa and 0.01 MPa of the triggering threshold, respectively, which indicates that the dynamic and static stresses are helpful for the occurrence of aftershock. This suggests that both influences of dynamic and static stresses should be con- sidered other than only either of them when studying aftershock triggering in near field.展开更多
Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlin...Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlinear solid media by the numerical method. Distinctly different from the case of numerical modeling of linear elastic wave, there may be several difficulties in the numerical treatment to the nonlinear partial differential equation, such as the steep gradients, shocks and unphysical oscillations. All of them are the great obstacles to the stability and conver-gence of numerical calculation. Fortunately, the comparative study on the modeling of nonlinear wave by the two FD schemes presented in the paper can provide us with an easy method to keep the stability and convergence in the calculation field when the product of the absolute value of nonlinear coefficient and the value of u/x are small enough, namely, the value of bu/x is much smaller than 1. Several results are founded in the numerical study of nonlinear P-wave propagation, such as the waveform aberration, the generation and growth of harmonic wave and the energy redistribution among different frequency components. All of them will be more violent when the initial amplitude A0 is larger or the nonlinearity of medium is stronger. Correspondingly, we have found that the nonlinear P-wave propagation velocity will change with different initial frequency f of source wave or the wave velocity c (equal to the P-wave velocity in the same medium without considering nonlinearity).展开更多
Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the ...Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there.展开更多
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli...In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.展开更多
Tsunami induced by earthquake is an interaction problem between liquid and solid.Shallow-water wave equation is often used to modeling the tsunami,and the boundary or initial condition of the problem is determined by ...Tsunami induced by earthquake is an interaction problem between liquid and solid.Shallow-water wave equation is often used to modeling the tsunami,and the boundary or initial condition of the problem is determined by the displacement or velocity field from the earthquake under sea floor,usually no interaction between them is consid-ered in pure liquid model.In this study,the potential flow theory and the finite element method with the interaction between liquid and solid are employed to model the dynamic processes of the earthquake and tsunami.For model-ing the earthquake,firstly the initial stress field to generate the earthquake is set up,and then the occurrence of the earthquake is simulated by suddenly reducing the elastic material parameters inside the earthquake fault.It is dif-ferent from seismic dislocation theory in which the relative slip on the fault is specified in advance.The modeling results reveal that P,SP and the surface wave can be found at the sea surface besides the tsunami wave.The surface wave arrives at the distance of 600 km from the epicenter earlier than the tsunami 48 minutes,and its maximum amplitude is 0.55 m,which is 2 times as large as that of the sea floor.Tsunami warning information can be taken from the surface wave on the sea surface,which is much earlier than that obtained from the seismograph stations on land.The tsunami speed on the open sea with 3 km depth is 175.8 m/s,which is a little greater than that pre-dicted by long wave theory,(gh)1/2=171.5 m,and its wavelength and amplitude in average are 32 km and 2 m,respectively.After the tsunami propagates to the continental shelf,its speed and wavelength is reduced,but its amplitude become greater,especially,it can elevate up to 10 m and run 55 m forward in vertical and horizontal directions at sea shore,respectively.The maximum vertical accelerations at the epicenter on the sea surface and on the earthquake fault are 5.9 m/s2 and 16.5 m/s2,respectively,the later is 2.8 times the former,and therefore,sea water is a good shock absorber.The acceleration at the sea shore is about 1/10 as large as at the epicenter.The maximum vertical velocity at the epicenter is 1.4 times that on the fault.The maximum vertical displacement at the fault is less than that at the epicenter.The difference between them is the amplitude of the tsunami at the epicenter.The time of the maximum displacement to occur on the fault is not at the beginning of the fault slipping but retards 23 s.展开更多
Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data,...Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan.展开更多
A sudden ionospheric disturbance was detected by the Doppler shift sounding equipment at Beijing, about 25 min later after the outbreak of the Sumatra earthquake on 26 December 2004. This ionospheric disturbance appea...A sudden ionospheric disturbance was detected by the Doppler shift sounding equipment at Beijing, about 25 min later after the outbreak of the Sumatra earthquake on 26 December 2004. This ionospheric disturbance appeared less than lOmin after the earthquake was first recorded at Beijing seismological station by the arrival of the seismic Rayleigh wave. The analysis shows that about 18rain is the time necessary for the seismic Rayleigh wave to propagate from the epicentre to Beijing and then about 5-10min for acoustic waves to propagate from the surface of the Beijing area to the altitude of the ionosphere. Also, a report was made as another example to show the ionospheric response of Doppler shift observation at Beijing area during the Mount Pinatubo eruption of 1991. These two examples show clear evidence of the lithosphere-atmosphere-ionosphere coupling. The former case is in the frequency domain of infrasonic waves of the Earth surface oscillation due to the Rayleigh waves caused by the earthquake, while the latter is in the acoustic-gravity wave category directly excited in the atmosphere by the mass and energy eruptions of Mount Pinatubo.展开更多
We synthesize significant recent results on the deep structure and origin of the active volcanoes in China's Mainland. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subduc...We synthesize significant recent results on the deep structure and origin of the active volcanoes in China's Mainland. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions.展开更多
Gravity Recovery and Climate Experiment(GRACE) observations have been used to de-tect the co-seismic and post-seismic gravity field variations due to the Mw=9.3 Sumatra-Andaman earthquake that occurred on December 2...Gravity Recovery and Climate Experiment(GRACE) observations have been used to de-tect the co-seismic and post-seismic gravity field variations due to the Mw=9.3 Sumatra-Andaman earthquake that occurred on December 26,2004.This article focuses on investigating some gravita-tional effects caused by this huge earthquake.We computed the geoid height changes,the equivalent water height(EWH) changes,and the gravity changes using the GRACE Level-2 monthly spherical harmonic(SH) solutions released by University of Texas Center for Space Research(UTCSR).The GRACE results agree well with the prediction by a dislocation model and are consistent with the results obtained by some previous scholars.In particular,we calculated the three components of the gravity gradient variations and found that they can recover the seismic-related signature more sensitively due to a certain degree of amplification of the signals.A positive-negative-positive mode predominates in the spatial distribution of the horizontal components of the gravity gradient variations,which is possibly attributed to the anomalies in the crustal density distribution caused by the uplift-subduction effect of the dip-slip earthquake.Moreover,the latitude components of the gravity gradient changes show strong suppression of the north-south stripes,which is due to the along-orbit measurements of the two GRACE satellites.We conclude that the posi-tive-negative-positive mode in latitude gravity gradient changes would be a more sensitive fea-ture to detect the deformations of some major dip-slip earthquakes by GRACE data.展开更多
Economic development, industrialization and dense population in Trabzon City have caused residential construction to increase by 300% in the last decade. The settlement area is moun- tainous and covered with heavy veg...Economic development, industrialization and dense population in Trabzon City have caused residential construction to increase by 300% in the last decade. The settlement area is moun- tainous and covered with heavy vegetation. Thus, the steep-sided topography and heavy precipita- tion means floods and landslides are common and in areas with little flat land. Since the mass movements in some parts of city create an enormous danger for buildings, site selection for residen- tial areas becomes increasingly important. This paper describes geotechnical and seismic properties of Tertiary volcanic rock and establishes the link between these units and construction. In this study, refraction tomography and multichannel analysis surface wave methods were applied in order to seek the best construction site in the residential area. The results of the geophysical study were com- pared with the borehole applications. A series of geomechnical tests were carried out on the core samples. Following that, statistical correlations were conducted by regression analysis to evaluate re- lationships between measured parameters. Rock Quality Designation and weathering degree were also determined. The methodology defined in this investigation proves to be an appropriate ap- proach to determine geotechnical properties of the foundation rocks and soils and a proper guide on future geotechnical studies for other cities.展开更多
In large continental orogens, an important research topic is the behavior of deep crustal and upper mantle deformation, and the flow styles of ductile material. The morphology of the eastern margin of the Tibetan plat...In large continental orogens, an important research topic is the behavior of deep crustal and upper mantle deformation, and the flow styles of ductile material. The morphology of the eastern margin of the Tibetan plateau, adjacent to the Sichuan basin, is characterized by very steep relief with high mountain ranges. The crust beneath this region slows the velocities in the middle and lower crust. We have adopted a relatively dense network to inverse the detailed structure of the crust and upper mantle along the eastern margin of the Tibetan plateau and Sichuan basin, using teleseismic data via receiver function analysis. The results are in-line with the hypothesis that viscous crustal material is flowing beneath the eastern margin of the Tibetan plateau and that this process drives overlying crustal material around the strong and rigid Sichuan basin. When the viscous material hits this obstruction, flows are divided into two or more branches with different directions. The upper part of the upwelling viscous flow produces the pressure to intrude the upper crust, thereby driving uplift of mountain ranges and high peaks. In contrast, the lower part of the downwelling viscous flow produces the pressure to intrude the lower crust and upper mantle to deepen the Moho discontinuity, causing observed crustal thickening.展开更多
Based upon seven superconducting gravimeter (SG) records of 20 000 h length after the 2004 Sumatra earthquake, four methods, namely the ensemble empirical mode decomposition (EEMD), the multi-station experiment (...Based upon seven superconducting gravimeter (SG) records of 20 000 h length after the 2004 Sumatra earthquake, four methods, namely the ensemble empirical mode decomposition (EEMD), the multi-station experiment (MSE) technique, the autoregressive (AR) method and the product spec- trum analysis (PSA) method, are chosen jointly together to detect the inner core translational modes (1S1). After the conventional pretreatment, each of the seven simultaneous residual gravity series is di- vided into five segments with an 80% overlap, and then EEMD is applied to all the 35 residual SG se- ries as a dyadic filter bank to get 35 filtered series. After then, according to different stations and dif- ferent time windows, five new simultaneous gravity datasets are obtained. After using MSE for each of the five new datasets, the AR method is used to demodulate some known harmonic signals from the new sequences that obtained by using MSE, and three demodulated product spectra are obtained. Then, according to two criterions, two clear spectral peaks at periods of 4.548 9±2.3×10^-5 and 3.802 3±3.2×10^-5 h corresponding respectively to the singlets m=-1 and m=+l are identified from various spectral peaks, and they are close to the predictions of the 1066A model given by Rieutord (2002), but no spectral peak corresponding to the singlet m=0 is found. We conclude that the selected two peaks might be the ob- served singlets of the Slichter triplet.展开更多
基金supported by the National Key R&D Program of China(Grant No.2020YFA0710604)NSFC(Grant No.42374064).
文摘Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).
文摘The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.
文摘It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a reliance on methods that resemble divination rather than sound scientific inquiry. Despite efforts to understand seismic phenomena over the past three centuries [1], progress in seismology has been perceived as somewhat stagnant. Criticisms have been raised about certain theories, such as Mr. Reid’s Elastic Recoil theory from 1910 [2], and its purported advancements in comprehending seismic processes. While acknowledging various perspectives on this matter [3]-[7], it is important to reflect on the historical context and potential limitations in our understanding. Addressing concerns raised within the discipline involves examining educational practices and fostering a rigorous academic environment to promote scientific excellence. This article aims to explore the underlying factors contributing to the current state of seismology, offering insights into overcoming challenges and fostering advancements that benefit the scientific community and society as a whole.
文摘Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion.
基金financial support received through a grant from the Vice-President's Research Office at Bu-Ali Sina University,Iran(Grant Number 09.99)。
文摘Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fault data along the Kuhbanan fault zone in southeastern Iran by applying the boxcounting method and observing the changes in Coulomb stress and tried to find the potential triggering parts.The entire region was divided into 16subzones with the box-counting method,and then the fractal dimension(D)in each zone was calculated.The analysis of the fractal dimension for active faults and earthquake epicenters along with the seismicity parameter(b)and their ratio in the Kuhbanan region indicates an imbalance between seismic fractals and faults.This finding suggests that the area may have the potential for future earthquakes or hidden faults.In conjunction with b-value and changes in Coulomb stress change,D-value analysis reveals intense tectonic activity and stress accumulation,particularly within the Ravar,Zarand,and Kianshahr sections.It may be considered a potential location for future earthquakes.The changes in Coulomb stress resulting from the 2005Dahuieh earthquake have also placed this region within the stress accumulation zone,potentially triggering the mentioned areas.This integrative approach,backed by historical earthquake data,highlights the impact of fault geometry and stress dynamics,offering an enhanced framework for earthquake forecasting and seismic risk mitigation applicable to other tectonically active areas within the Iranian plateau.
基金supported by the National Key R&D Program of China under grant No.2021YFA0716800。
文摘Distributed acoustic sensing(DAS)is increasingly used in seismic exploration owing to its wide frequency range,dense sampling and real-time monitoring.DAS radiation patterns help to understand angle response of DAS records and improve the quality of inversion and imaging.In this paper,we solve the 3D vertical transverse isotropic(VTI)Christoffel equation and obtain the analytical,frst-order,and zero-order Taylor expansion solutions that represent P-,SV-,and SH-wave phase velocities and polarization vectors.These analytical and approximated solutions are used to build the P/S plane-wave expression identical to the far-feld term of seismic wave,from which the strain rate expressions are derived and DAS radiation patterns are thus extracted for anisotropic P/S waves.We observe that the gauge length and phase angle terms control the radiating intensity of DAS records.Additionally,the Bond transformation is adopted to derive the DAS radiation patterns in title transverse isotropic(TTI)media,which exhibits higher complexity than that of VTI media.Several synthetic examples demonstrate the feasibility and effectiveness of our theory.
基金supported by the National Natural Science Foundation of China(Grant No.42474227,42241106,42388101)financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space(DLR)under contract 50 OC 0302
文摘The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought.
基金State Key Basic Research Project of Development and Programming Mechanism and Prediction of Continental Strong Earthquakes (G1998040700).
文摘Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network of China used by WANG, et al. We discussed the relation of Pn velocity variation to Moho depth, Earths heat flow, distribution of Cenozoic volcanic rock and the result of rock experiment under high pressure and high temperature. The result of quantitative analysis indicates that Pn velocity is positively correlated with the crust thickness and negatively correlated with the Earths heat flow. Two linear regression equations, one between Pn velocity and crust thickness, and the other between Pn velocity and heat flow, were obtained. The rate of variation of Pn veloc-ity vP with pressure P, Pv/p, estimated from the velocity variation with crust thickness Hv/p, is close to the result obtained from the rock experiment under high pressure and high temperature. If the effect of crust thick-ness on Pn velocity is deducted from the velocity variation, then the low Pn velocity beneath Qinghai-Xizang pla-teau is more notable. The low Pn velocity regions well agree with the Cenozoic volcanic rock. In the several re-gions with significant anisotropy, the direction of fast Pn velocity is consistent with the orientation of maximum principal crustal compressive stress, and also with the direction of present-day crustal movement. It indicates that the fast Pn velocity direction may be related to the deformation or flow of top mantle material along the direction of maximum pressure.
文摘Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequent after- shocks. The results show that the spatial distribution patterns of the positive region of dynamic stress peak value and static stress peak value are similarly asymmetric, which are basically identical with distribution features of aftershock. The dynamic stress peak value and the static stress in the positive region are more than 0.1 MPa and 0.01 MPa of the triggering threshold, respectively, which indicates that the dynamic and static stresses are helpful for the occurrence of aftershock. This suggests that both influences of dynamic and static stresses should be con- sidered other than only either of them when studying aftershock triggering in near field.
基金Project of Knowledge Innovation Program from Chinese Academy of Sciences (KZCX2-109).
文摘Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlinear solid media by the numerical method. Distinctly different from the case of numerical modeling of linear elastic wave, there may be several difficulties in the numerical treatment to the nonlinear partial differential equation, such as the steep gradients, shocks and unphysical oscillations. All of them are the great obstacles to the stability and conver-gence of numerical calculation. Fortunately, the comparative study on the modeling of nonlinear wave by the two FD schemes presented in the paper can provide us with an easy method to keep the stability and convergence in the calculation field when the product of the absolute value of nonlinear coefficient and the value of u/x are small enough, namely, the value of bu/x is much smaller than 1. Several results are founded in the numerical study of nonlinear P-wave propagation, such as the waveform aberration, the generation and growth of harmonic wave and the energy redistribution among different frequency components. All of them will be more violent when the initial amplitude A0 is larger or the nonlinearity of medium is stronger. Correspondingly, we have found that the nonlinear P-wave propagation velocity will change with different initial frequency f of source wave or the wave velocity c (equal to the P-wave velocity in the same medium without considering nonlinearity).
基金supported by the Chinese Scholarship Foundation,the Gravity and Magnetics Research Consortium(GMRC)the National Natural Science Foundation of China(No.41074095)+1 种基金the National Special Project(No.201011039)the Open Project of the National Key Laboratory for Geological Processes and Mineral Resources(No.GPMR0942)
文摘Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there.
文摘In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.
基金National Natural Science Foundation of China (40521002 and 40474013).
文摘Tsunami induced by earthquake is an interaction problem between liquid and solid.Shallow-water wave equation is often used to modeling the tsunami,and the boundary or initial condition of the problem is determined by the displacement or velocity field from the earthquake under sea floor,usually no interaction between them is consid-ered in pure liquid model.In this study,the potential flow theory and the finite element method with the interaction between liquid and solid are employed to model the dynamic processes of the earthquake and tsunami.For model-ing the earthquake,firstly the initial stress field to generate the earthquake is set up,and then the occurrence of the earthquake is simulated by suddenly reducing the elastic material parameters inside the earthquake fault.It is dif-ferent from seismic dislocation theory in which the relative slip on the fault is specified in advance.The modeling results reveal that P,SP and the surface wave can be found at the sea surface besides the tsunami wave.The surface wave arrives at the distance of 600 km from the epicenter earlier than the tsunami 48 minutes,and its maximum amplitude is 0.55 m,which is 2 times as large as that of the sea floor.Tsunami warning information can be taken from the surface wave on the sea surface,which is much earlier than that obtained from the seismograph stations on land.The tsunami speed on the open sea with 3 km depth is 175.8 m/s,which is a little greater than that pre-dicted by long wave theory,(gh)1/2=171.5 m,and its wavelength and amplitude in average are 32 km and 2 m,respectively.After the tsunami propagates to the continental shelf,its speed and wavelength is reduced,but its amplitude become greater,especially,it can elevate up to 10 m and run 55 m forward in vertical and horizontal directions at sea shore,respectively.The maximum vertical accelerations at the epicenter on the sea surface and on the earthquake fault are 5.9 m/s2 and 16.5 m/s2,respectively,the later is 2.8 times the former,and therefore,sea water is a good shock absorber.The acceleration at the sea shore is about 1/10 as large as at the epicenter.The maximum vertical velocity at the epicenter is 1.4 times that on the fault.The maximum vertical displacement at the fault is less than that at the epicenter.The difference between them is the amplitude of the tsunami at the epicenter.The time of the maximum displacement to occur on the fault is not at the beginning of the fault slipping but retards 23 s.
基金the auspices of the National!(G1998040800)CAS's Key Project for Basic Research on the Tibetan Plateau! (KZ951-A1-204, KZ95T-
文摘Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40274053 and 40134020.
文摘A sudden ionospheric disturbance was detected by the Doppler shift sounding equipment at Beijing, about 25 min later after the outbreak of the Sumatra earthquake on 26 December 2004. This ionospheric disturbance appeared less than lOmin after the earthquake was first recorded at Beijing seismological station by the arrival of the seismic Rayleigh wave. The analysis shows that about 18rain is the time necessary for the seismic Rayleigh wave to propagate from the epicentre to Beijing and then about 5-10min for acoustic waves to propagate from the surface of the Beijing area to the altitude of the ionosphere. Also, a report was made as another example to show the ionospheric response of Doppler shift observation at Beijing area during the Mount Pinatubo eruption of 1991. These two examples show clear evidence of the lithosphere-atmosphere-ionosphere coupling. The former case is in the frequency domain of infrasonic waves of the Earth surface oscillation due to the Rayleigh waves caused by the earthquake, while the latter is in the acoustic-gravity wave category directly excited in the atmosphere by the mass and energy eruptions of Mount Pinatubo.
基金partially supported by Grant-in-aid for Scientific Research(Kiban-B.11440134,Kiban-A 17204037) from Japan Society for the Promotion of Science and by some financial support from the Global Center of Excellence(G-COE) program of Tohoku University
文摘We synthesize significant recent results on the deep structure and origin of the active volcanoes in China's Mainland. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions.
基金supported by the National Natural Science Foundation of China (Nos. 40974015,40637034)the Fund of Key Laboratory of Geodynamic Geodesy, Chinese Academy of Sciences (No. 09-18)the Fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China (No. 07-12)
文摘Gravity Recovery and Climate Experiment(GRACE) observations have been used to de-tect the co-seismic and post-seismic gravity field variations due to the Mw=9.3 Sumatra-Andaman earthquake that occurred on December 26,2004.This article focuses on investigating some gravita-tional effects caused by this huge earthquake.We computed the geoid height changes,the equivalent water height(EWH) changes,and the gravity changes using the GRACE Level-2 monthly spherical harmonic(SH) solutions released by University of Texas Center for Space Research(UTCSR).The GRACE results agree well with the prediction by a dislocation model and are consistent with the results obtained by some previous scholars.In particular,we calculated the three components of the gravity gradient variations and found that they can recover the seismic-related signature more sensitively due to a certain degree of amplification of the signals.A positive-negative-positive mode predominates in the spatial distribution of the horizontal components of the gravity gradient variations,which is possibly attributed to the anomalies in the crustal density distribution caused by the uplift-subduction effect of the dip-slip earthquake.Moreover,the latitude components of the gravity gradient changes show strong suppression of the north-south stripes,which is due to the along-orbit measurements of the two GRACE satellites.We conclude that the posi-tive-negative-positive mode in latitude gravity gradient changes would be a more sensitive fea-ture to detect the deformations of some major dip-slip earthquakes by GRACE data.
基金supported by Karadeniz Technical University, Scientific Research Funding (No. BTAP-695)
文摘Economic development, industrialization and dense population in Trabzon City have caused residential construction to increase by 300% in the last decade. The settlement area is moun- tainous and covered with heavy vegetation. Thus, the steep-sided topography and heavy precipita- tion means floods and landslides are common and in areas with little flat land. Since the mass movements in some parts of city create an enormous danger for buildings, site selection for residen- tial areas becomes increasingly important. This paper describes geotechnical and seismic properties of Tertiary volcanic rock and establishes the link between these units and construction. In this study, refraction tomography and multichannel analysis surface wave methods were applied in order to seek the best construction site in the residential area. The results of the geophysical study were com- pared with the borehole applications. A series of geomechnical tests were carried out on the core samples. Following that, statistical correlations were conducted by regression analysis to evaluate re- lationships between measured parameters. Rock Quality Designation and weathering degree were also determined. The methodology defined in this investigation proves to be an appropriate ap- proach to determine geotechnical properties of the foundation rocks and soils and a proper guide on future geotechnical studies for other cities.
基金supported by National Natural Science Foundation of China under grant Nos. 40839909,41074062, and 40674040
文摘In large continental orogens, an important research topic is the behavior of deep crustal and upper mantle deformation, and the flow styles of ductile material. The morphology of the eastern margin of the Tibetan plateau, adjacent to the Sichuan basin, is characterized by very steep relief with high mountain ranges. The crust beneath this region slows the velocities in the middle and lower crust. We have adopted a relatively dense network to inverse the detailed structure of the crust and upper mantle along the eastern margin of the Tibetan plateau and Sichuan basin, using teleseismic data via receiver function analysis. The results are in-line with the hypothesis that viscous crustal material is flowing beneath the eastern margin of the Tibetan plateau and that this process drives overlying crustal material around the strong and rigid Sichuan basin. When the viscous material hits this obstruction, flows are divided into two or more branches with different directions. The upper part of the upwelling viscous flow produces the pressure to intrude the upper crust, thereby driving uplift of mountain ranges and high peaks. In contrast, the lower part of the downwelling viscous flow produces the pressure to intrude the lower crust and upper mantle to deepen the Moho discontinuity, causing observed crustal thickening.
基金supported by the National Natural Science Foundation of China(No.41174011)the National Natural Science Foundation of China(Nos.41128003,41021061,40974015)+2 种基金the National 973 Project of China(No.2013CB733305)the Fundamental Research Funds for the Central Universities(No.2012214020203)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Nos.12-02-04,12-02-02)
文摘Based upon seven superconducting gravimeter (SG) records of 20 000 h length after the 2004 Sumatra earthquake, four methods, namely the ensemble empirical mode decomposition (EEMD), the multi-station experiment (MSE) technique, the autoregressive (AR) method and the product spec- trum analysis (PSA) method, are chosen jointly together to detect the inner core translational modes (1S1). After the conventional pretreatment, each of the seven simultaneous residual gravity series is di- vided into five segments with an 80% overlap, and then EEMD is applied to all the 35 residual SG se- ries as a dyadic filter bank to get 35 filtered series. After then, according to different stations and dif- ferent time windows, five new simultaneous gravity datasets are obtained. After using MSE for each of the five new datasets, the AR method is used to demodulate some known harmonic signals from the new sequences that obtained by using MSE, and three demodulated product spectra are obtained. Then, according to two criterions, two clear spectral peaks at periods of 4.548 9±2.3×10^-5 and 3.802 3±3.2×10^-5 h corresponding respectively to the singlets m=-1 and m=+l are identified from various spectral peaks, and they are close to the predictions of the 1066A model given by Rieutord (2002), but no spectral peak corresponding to the singlet m=0 is found. We conclude that the selected two peaks might be the ob- served singlets of the Slichter triplet.