期刊文献+
共找到9,369篇文章
< 1 2 250 >
每页显示 20 50 100
A Novel Approach Based on Recuperated Seed Search Optimization for Solving Mechanical Engineering Design Problems
1
作者 Sumika Chauhan Govind Vashishtha +1 位作者 Riya Singh Divesh Bharti 《Computer Modeling in Engineering & Sciences》 2025年第7期309-343,共35页
This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques strug... This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques struggle with slow convergence and suboptimal solutions due to complex,nonlinear natures.The Sperm Swarm Optimization(SSO)algorithm,which mimics the sperm’s movement to reach an egg,is one such technique.To improve SSO,researchers combined it with three strategies:opposition-based learning(OBL),Cauchy mutation(CM),and position clamping.OBL introduces diversity to SSO by exploring opposite solutions,speeding up convergence.CM enhances both exploration and exploitation capabilities throughout the optimization process.This combined approach,RSSO,has been rigorously tested on standard benchmark functions,real-world engineering problems,and through statistical analysis(Wilcoxon test).The results demonstrate that RSSO significantly outperforms other optimization algorithms,achieving faster convergence and better solutions.The paper details the RSSO algorithm,discusses its implementation,and presents comparative results that validate its effectiveness in solving complex engineering design challenges. 展开更多
关键词 Local search Cauchy mutation opposition-based learning EXPLORATION EXPLOITATION
在线阅读 下载PDF
Laser shock processing of titanium alloys:A critical review on the microstructure evolution and enhanced engineering performance 被引量:2
2
作者 Qian Liu Shuangjie Chu +6 位作者 Xing Zhang Yuqian Wang Haiyan Zhao Bohao Zhou Hao Wang Genbin Wu Bo Mao 《Journal of Materials Science & Technology》 2025年第6期262-291,共30页
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ... Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends. 展开更多
关键词 Laser shock peening Titanium alloys Microstructure evolution Mechanical properties
原文传递
DYNAMIC STABILITY OF SPINDLE BLADE IN RING SPINNING Zhou Bingrong(Department of Mechanical Engineering)
3
作者 周炳荣 《Journal of Donghua University(English Edition)》 EI CAS 1989年第Z1期55-61,共7页
It is discussed that a tangential force T induces a self-excited vibration in the motion ofspindle blades of a ring spinning frame.Depending on the relative magnitude of the tangentialforce compared with the tangentia... It is discussed that a tangential force T induces a self-excited vibration in the motion ofspindle blades of a ring spinning frame.Depending on the relative magnitude of the tangentialforce compared with the tangential damping force the motion of blade is either stable orunstable.The chief factors causing the self-excited vibration can also be traced from the charac-ter of the experimental locus. 展开更多
关键词 dynamic stability ring SPINNING SPINDLES vibration self EXCITATION stablity theory of motion
在线阅读 下载PDF
Review on Characteristic and Mechanical Behaviour of FGMs Prepared by Additive Manufacturing
4
作者 Sainath Krishna Mani Iyer Prabagaran Subramaniam 《稀有金属材料与工程》 北大核心 2025年第6期1478-1488,共11页
The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manuf... The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manufacturing process employed to manufacture complex 3D objects without tools,molds,assembly,and joining.Currently,commercial AM techniques mostly use homogeneous composition with simplified geometric descriptions,employing a single material across the entire component to achieve functional graded additive manufacturing(FGAM),in contrast to multi-material FGAM with heterogeneous structures.FGMs are widely used in various fields due to their mechanical property advantages.Because FGM plays a significant role in the industrial production,the characteristics and mechanical behaviour of FGMs prepared by AM were reviewed.In this review,the research on FGMs and AM over the past 30 years was reviewed,suggesting that future researchers should focus on the application of artificial intelligence and machine learning technologies in industry to optimize the process parameters of different gradient systems. 展开更多
关键词 additive manufacturing functionally graded material manufacturing process mechanical behaviour CHARACTERISTIC
原文传递
Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects 被引量:1
5
作者 Ganesh Kumar Subham Preetam +5 位作者 Arunima Pandey Nick Birbilis Saad Al-Saadi Pooria Pasbakhsh Mikhail Zheludkevich Poovarasi Balan 《Journal of Magnesium and Alloys》 2025年第3期948-981,共34页
Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditi... Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology. 展开更多
关键词 Magnesium alloy Cardiovascular stent Surface modification Corrosion BIOCOMPATIBILITY Biomedical application
暂未订购
Fatigue Resistance in Engineering Components:A Comprehensive Review on the Role of Geometry and Its Optimization
6
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computer Modeling in Engineering & Sciences》 2025年第7期201-237,共37页
Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how str... Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how stress affects lifespan,this review offers the first comprehensive,multiscale comparison of strategies that optimize geometry to improve fatigue performance.This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets,notches,and overall structural layouts.We analyze and combine various methods,including topology and shape optimization,the ability of additive manufacturing to finetune internal geometries,and reliability-based design approaches.A key new contribution is our proposal of a standard way to evaluate geometry-focused fatigue design,allowing for consistent comparison and encouraging validation across different fields.Furthermore,we highlight important areas for future research,such as incorporating manufacturing flaws,using multiscale models,and integrating machine learning techniques.This work is the first to provide a broad geometric viewpoint in fatigue engineering,laying the groundwork for future design methods that are driven by data and centered on reliability. 展开更多
关键词 Fatigue resistance geometry optimization topology optimization microstructural geometry additive manufacturing crack initiation multiaxial fatigue reliability-based design raster orientation notch effect defect morphology fatigue life prediction
在线阅读 下载PDF
Spontaneous Orientation Polarization of Anisotropic Equivalent Dipoles Harnessed by Entropy Engineering for Ultra‑Thin Electromagnetic Wave Absorber
7
作者 Honghan Wang Xinyu Xiao +5 位作者 Shangru Zhai Chuang Xue Guangping Zheng Deqing Zhang Renchao Che Junye Cheng 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期424-438,共15页
The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engin... The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter). 展开更多
关键词 High-entropy alloys Carbothermal shock Switchable electron migration modes Emblematic shell-core heterointerfaces Ultra-thin thickness
在线阅读 下载PDF
Investigation of SAW heat input on modified 9Cr-1Mo steel: microstructure, mechanical properties, and residual stress
8
作者 Joydeep Roy Pritam Das Raja Chakrabarti 《China Welding》 2025年第3期207-216,共10页
This study investigates the impact of welding heat input on weldments of modified 9Cr-1Mo(P91)steel,a high-strength material that requires high-energy welding processes like submerged arc welding.In the as-welded cond... This study investigates the impact of welding heat input on weldments of modified 9Cr-1Mo(P91)steel,a high-strength material that requires high-energy welding processes like submerged arc welding.In the as-welded condition,P91 steel welds primarily consist of untempered martensite,which transforms into tempered martensite during post-weld heat treatment(PWHT).Electron spectro-scopy analysis reveals the presence of M_(23)C_(6) and MX carbonitride precipitates at grain boundaries.Increasing the heat input leads to greater quantities of precipitates in the prior austenite grain boundaries,which can affect material properties.Weldment hardness profiles exhibit modest improvements,while ultimate tensile strength and toughness decrease with higher welding heat input,poten-tially due to the formation of a ferritic phase.Residual stress distributions are noticeably influenced by the welding heat input level. 展开更多
关键词 P91 steel Heat input MICROSTRUCTURE Mechanical properties Residual stress
在线阅读 下载PDF
A Robust Hybrid Solution for Pull-in Instability of FG Nano Electro-Mechanical Switches Based on Surface Elasticity Theory
9
作者 Vafa Mirzaei Mohammad Bameri +1 位作者 Peyman Moradweysi Mohammad Mohammadi Aghdam 《Computer Modeling in Engineering & Sciences》 2025年第6期2811-2832,共22页
The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a ... The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a novel compound numerical method to study the instability of a functionally graded(FG)beam-type NEMS,considering surface elasticity effects as stated by Gurtin-Murdoch theory in an Euler-Bernoulli beam.The presented method is based on a combination of the Method of Adjoints(MoA)together with the Bézier-based multistep technique.By utilizing the MoA,a boundary value problem(BVP)is turned into an initial value problem(IVP).The resulting IVP is then solved by employing a cost-efficient multi-step process.It is demonstrated that the mentioned method can arrive at a high level of accuracy.Furthermore,it is revealed that the stability of the presented methodology is far better than that of other common multi-step methods,such as Adams-Bashforth,particularly at higher step sizes.Finally,the effects of axially functionally graded(FG)properties on the pull-in phenomenon and the main design parameters of NEMS,including the detachment length,are inspected.It was shown that the main parameter of design is the modulus of elasticity of the material,as Silver(Ag),which had better mechanical properties,showed almost a 6%improvement compared to aluminum(Al).However,by applying the correct amount of material with sturdier surface parameters,such as Aluminum(Al),at certain points,the nanobeams’functionality can be improved even further by around 1.5%. 展开更多
关键词 Nano electro-mechanical switches pull-in instability surface elasticity theory method of Adjoints Bezier multi-step method
在线阅读 下载PDF
A fast-running engineering tool for assessing structural vulnerability to blast loading
10
作者 Carlo Crispino Salvatore Annunziata +2 位作者 Alberto Contini Luca Lomazzi Andrea Manes 《Defence Technology(防务技术)》 2025年第4期244-254,共11页
Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that e... Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that enhance the platform's chances of surviving different scenarios.Such scenarios can involve various types of threats that can affect the platform's survivability.Among such,blast waves impacting the platform's structure represent critical conditions that have not yet been studied in detail.That is,frameworks for vulnerability assessment that can deal with blast loading have not been presented yet.In this context,this work presents a fast-running engineering tool that can quantify the risk that a structure fails when it is subjected to blast loading from the detonation of high explosive-driven threats detonating at various distances from the structure itself.The tool has been implemented in an in-house software that calculates vulnerability to various impacting objects,and its capabilities have been shown through a simplified,yet realistic,case study.The novelty of this research lies in the development of an integrated computational environment capable of calculating the platform's vulnerability to blast waves,without the need for running expensive finite element simulations.In fact,the proposed tool is fully based on analytical models integrated with a probabilistic approach for vulnerability calculation. 展开更多
关键词 VULNERABILITY Blast loading Probabilistic assessment Analytical models Fast-running engineering tool
在线阅读 下载PDF
Mechanical and impact behaviour of titanium-based fiber metal laminates reinforced with kevlar and jute fibers under various stacking configurations
11
作者 V.Subramanian K.Logesh +1 位作者 Renjin J.Bright P.Hariharasakthisudhan 《Defence Technology(防务技术)》 2025年第11期19-30,共12页
The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.T... The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications. 展开更多
关键词 Titanium-based fiber metal laminates(FMLs) Kevlar-jute hybrid fibers Mechanical properties Stacking configuration Drop-weight test
在线阅读 下载PDF
Formulation and Investigation of Thermo Mechanical Properties of a Friction Material(Liner)Made from Ox Horn Particles
12
作者 Moungnutou Ndam Soulemanou Anyi Joseph Nkongho +1 位作者 Theodore Tchotang Mahonde 《Journal of Minerals and Materials Characterization and Engineering》 2025年第6期328-369,共42页
This article investigates into the physical and thermo mechanical properties of a friction composite material based on ox horn and phenolic resin.The tests revealed that an intermediate density of 100μm offers a good... This article investigates into the physical and thermo mechanical properties of a friction composite material based on ox horn and phenolic resin.The tests revealed that an intermediate density of 100μm offers a good balance between density and homogeneity.Increasing the horn particles fraction reduces the density of the composite,thereby influencing its compactness and porosity.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)morphology analysis revealed that fine particles(50μm)provide good dispersion and promote porosity.Intermediate particles(100μm)offer the best balance of cohesion,low porosity and good mechanical performance.Coarse particles(300μm)provide greater density but less effective interfacial adhesion.The compressive strength of the composite depends heavily on particle size and horn particles fraction.The static friction coefficient of the horn particles and phenolic resin composite(100μm)is 0.42/0.35(for Kevlar-based brake linings)and 0.40(for carbon fibre-based linings).Wear tests have proven that the ox horn and phenolic resin composite varies between 2.5-3.0(mm^(3)/Nm)and 1.5-2.0(mm^(3)/Nm). 展开更多
关键词 INVESTIGATION Friction Material Horns Particles Thermal Properties Mechanical Properties
在线阅读 下载PDF
Kelvin lattice structures fabricated by laser powder bed fusion:Design,preparation,and mechanical performance
13
作者 Yan-peng Wei Huai-qian Li +3 位作者 Ying-chun Ma Zhi-quan Miao Bo Yu Feng Lin 《China Foundry》 2025年第2期117-127,共11页
Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have ga... Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have garnered increasing research interest.However,most metallic lattice structures generally exhibit anisotropic characteristics,which limits their application ranges.Additionally,a limited number of studies have successfully developed precise mechanical models,which have undergone experimental validation,for the purpose of describing the mechanical response exhibited by additively manufactured metallic lattice structures.In this study,Kelvin lattice structures with varying porosities were systematically designed and fabricated using laser powder bed fusion(LPBF)technology.By integrating finite element simulations with experimental characterization,an enhanced mechanical model was developed through a modification of the Gibson-Ashby model,providing an accurate quantitative description of the relationship between porosity and mechanical properties.The results show that the revised mechanical model can accurately describe the relationship between the geometric parameters and properties of metallic lattice structures.Specifically,the designed Kelvin lattice structures exhibit a smooth stress-strain curve with an obvious yield platform,demonstrating isotropic mechanical properties in all the three spatial directions.This enhances their suitability for complex loading conditions.Meanwhile,the microstructure and manufacturing accuracy of the Kelvin lattice structures were observed and analyzed by micro computed tomography.The results show that the fabricated metallic lattice structures achieved precise dimensional control and optimal densification.This study presents the complete process involved in modeling the Kelvin structure,including its conceptualization,manufacturing,implementation,and ultimately,disposal. 展开更多
关键词 Kelvin structure metallic lattice structures laser powder bed fusion mechanical model isotropic mechanical properties
在线阅读 下载PDF
Recent progress in triboelectric platforms:engineering materials to industrial applications from the perspective of manufacturing
14
作者 Yoonsang Ra Minjun Song +9 位作者 Donghan Lee Sunmin Jang Yu-seop Kim Joonmin Chae Sumin Cho Dongik Kam Donghyun Lee Gibeom Lee Younghoon Lee Dongwhi Choi 《International Journal of Extreme Manufacturing》 2025年第3期232-258,共27页
With the growing importance of wearable and portable electronics in modern society and industry,researchers from all over the world have reported on advances in energy harvesting and self-powered sensing technologies.... With the growing importance of wearable and portable electronics in modern society and industry,researchers from all over the world have reported on advances in energy harvesting and self-powered sensing technologies.The current review discusses recent developments in triboelectric platforms from a manufacturing perspective,including material,design,application,and industrialization.Manufacturing is an essential component of both industry and technology.The use of a proper manufacturing process enables cutting-edge technology in a lab-scale stage to progress to commercialization and popularization with scalability,availability,commercial advantage,and consistent quality.Furthermore,much literature has emphasized that the most powerful advantage of the triboelectric platform is its wide range of available materials and simple working mechanism,both of which are important characteristics in manufacturing engineering.As a result,different manufacturing processes can be implemented as needed.Because the practical process can have a synergetic effect on the fundamental development,resulting in the growth of both,the development of the triboelectric platform from the standpoint of manufacturing engineering can be further advanced.However,research into the development of a productive manufacturing process is still in its early stages in the field of triboelectric platforms.This review looks at the various manufacturing technologies used in previous studies and discusses the potential benefits of the appropriate process for triboelectric platforms.Given its unique strength,which includes a diverse material selection and a simple working mechanism,the triboelectric platform can use a variety of manufacturing technologies and the process can be optimized as needed.Numerous research groups have clearly demonstrated the triboelectric platform's advantages.As a result,using appropriate manufacturing processes can accelerate the technological advancement of triboelectric platforms in a variety of research and industrial fields by allowing them to move beyond the lab-scale fabrication stage. 展开更多
关键词 triboelectric platform mechanical design functional material manufacturing process industrial application
在线阅读 下载PDF
Influence of cryogenic treatment on mechanical and ballistic properties of AA5754 alloy friction stir welded joints
15
作者 V.Manoj Mohan Prasath S.Dharani Kumar Saurabh S.Kumar 《Defence Technology(防务技术)》 2025年第4期184-198,共15页
In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-pierc... In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-piercing(AP)bullet at an impact velocity of 682±20 m/s.The FSW technique was used to prepare the welded samples for AA5754,with an axial force of 7 kN,a feed rate of 20 mm/min,and a speed of 1200 rpm.The cryogenic treatments performed after welding,including deep cryogenic treatment(DCT)at196℃ and shallow cryogenic treatment(SCT)at80℃,for 6 and 72 h,respectively.The microstructure and mechanical characteristics of cryogenically treated and untreated joints were examined.The cryogenic treatment refined the grain size(1.05 μm)and enhanced the microhardness(93 Hv).Moreover,DCT-FSW significantly improved the tensile strength(13.93%)and impact strength(8.45%)compared to untreated FSW sample.Additionally,in untreated FSW samples,the fracture behaviour varied:the impact fracture mode primarily exhibited ductile failure,while the tensile fracture exhibited a mixed fracture mode.In contrast,the tensile and impact fracture modes of the DCT-FSWwere dominated by a ductile failure mode.The DCT-FSW target demonstrated a lower depth of penetration(DOP)of 31 mm compared to the SCT-FSWand untreated FSW targets.Post-ballistic SEM analysis in the crater region of all three zones revealed the formation of frictional grooves,small cracks,and adiabatic shear bands(ASBs). 展开更多
关键词 AA5754 alloy Ballistic and mechanical properties Cryogenic treatment Depth of penetration
在线阅读 下载PDF
Thermodynamic and mechanical properties of Co -Fe-Ni-Zn-P multicomponent metallic nanoglasses: Some insight into the entropy -stabilized glass-glass interfaces
16
作者 Tian Li Nana Li +1 位作者 Rongxue Luo Guangping Zheng 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1965-1977,共13页
Although the existence of glass–glass interfaces(GGIs)enables improved ductility of metallic nanoglasses(NGs),the excess free volumes at GGIs would cause the NGs to have a much-reduced mechanical strength.Herein,entr... Although the existence of glass–glass interfaces(GGIs)enables improved ductility of metallic nanoglasses(NGs),the excess free volumes at GGIs would cause the NGs to have a much-reduced mechanical strength.Herein,entropy-stabilized GGIs have been in-vestigated in Co–Fe–Ni–Zn–P NGs,which have a large entropy of mixing(1.32R,where R is the gas constant)and could be in a new glass phase,different from that of glassy grain interiors.Through quantitatively determining the activation energy of glass transition sep-arately for the GGIs and glassy grain interiors,the excess free volumes at GGIs are found to be reduced in comparison with those in the glassy grain interiors.The thermodynamically stable GGIs could be associated with increasing entropy of mixing in the GGI regions,which stabilizes the atomic structures of GGIs and enhances the glass forming ability of Co–Fe–Ni–Zn–P NGs.The influences of entropy-stabilized GGIs on the mechanical properties of Co–Fe–Ni–Zn–P NGs are further investigated by nanoindentation and creep tests under tensile deformation,demonstrating that there are notable enhancements in the ductility and mechanical strength for Co–Fe–Ni–Zn–P NGs.This work contributes to an in-depth understanding on the GGI phase in NGs and offers an alternative method for strengthening NGs through GGI engineering. 展开更多
关键词 glass–glass interfaces metallic nanoglasses high-entropy effects mechanical properties thermodynamic properties
在线阅读 下载PDF
Unveiling micro-scale mechanisms of in-situ silicon alloying for tailoring mechanical properties in titanium alloys:Experiments and computational modeling
17
作者 Sisi Tang Li Li +3 位作者 Jinlong Su Yuan Yuan Yong Han Jinglian Fan 《Journal of Materials Science & Technology》 2025年第17期150-163,共14页
Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the... Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the sufficient content of Si is critical for achieving these favorable performances,while excessive Si addition will result in mechanical brittleness.Herein,both physical experiments and finite element(FE)simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys.Four typical states of Si-containing Ti alloys(solid solution state,hypoeutectoid state,near-eutectoid state,hypereutectoid state)with varying Si content(0.3-1.2 wt.%)were fabricated via in-situ alloying spark plasma sintering.Experimental results indicate that in-situ alloying of 0.6 wt.%Si enhances the alloy’s strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti_(5)Si_(3)particles,while higher content of Si(0.9 and 1.2 wt.%)results in coarser primary Ti_(5)Si_(3)agglomerations,deteriorating the ductility.FE simulations support these findings,highlighting the finer and more uniformly distributed Ti_(5)Si_(3)particles contribute to less stress concentration and promote uniform deformation across the matrix,while agglomerated Ti_(5)Si_(3)particles result in increased local stress concentrations,leading to higher chances of particle fracture and reduced ductility.This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Si-containing Ti alloys. 展开更多
关键词 Titanium alloy Spark plasma sintering Micro-scale deformation behavior Mechanical property tailoring Computational modeling
原文传递
Effects of residual elements on the microstructure and mechanical properties of a Q&P steel
18
作者 Qing Zhu Junheng Gao +10 位作者 Haitao Zhao Dikai Guan Yunfei Zhang Yuhe Huang Shuai Li Wei Yang Kai Wang Shuize Wang Honghui Wu Chaolei Zhang Xinping Mao 《Journal of Materials Science & Technology》 2025年第18期143-154,共12页
Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most e... Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most effective strategies for addressing these issues.However,typical residual elements(Cu,As,Sn,Sb,Bi,etc.)inherited from scrap could significantly influence the mechanical properties of steel.In this work,we investigate the effects of residual elements on the microstructure evolution and mechanical properties of a quenching and partitioning(Q&P)steel by comparing a commercial QP1180 steel(referred to as QP)to the one containing typical residual elements(Cu+As+Sn+Sb+Bi<0.3wt%)(referred to as QP-R).The results demonstrate that in comparison with the QP steel,the residual elements significantly refine the prior austenite grain(9.7μm vs.14.6μm)due to their strong solute drag effect,leading to a higher volume fraction(13.0%vs.11.8%),a smaller size(473 nm vs.790 nm)and a higher average carbon content(1.26 wt%vs.0.99 wt%)of retained austenite in the QP-R steel.As a result,the QP-R steel exhibits a sustained transformation-induced plasticity(TRIP)effect,leading to an enhanced strain hardening effect and a simultaneous improvement of strength and ductility.Grain boundary segregation of residual elements was not observed at prior austenite grain boundaries in the QP-R steel,primarily due to continuous interface migration during austenitization.This study demonstrates that the residual elements with concentrations comparable to that in scrap result in significant microstructural refinement,causing retained austenite with relatively higher stability and thus offering promising mechanical properties and potential applications. 展开更多
关键词 Residual elements Q&P steel Retained austenite Strain-hardening rate
原文传递
Structural origin of enhanced storage energy performance and robust mechanical property in A-site disordered high-entropy ceramics
19
作者 Shuai Chen Ting Wang +6 位作者 Xiao-Ling Wang Kai Li Qing-Feng Zhu Wei-Ping Gong Ge Liu Qing-Yuan Wang Shao-Xiong Xie 《Rare Metals》 2025年第1期551-564,共14页
High-entropy perovskite ferroelectric materials have attracted significant attention due to their remarkably low remnant polarizations and narrow hysteresis.Thus,these materials offer high-energy density and efficienc... High-entropy perovskite ferroelectric materials have attracted significant attention due to their remarkably low remnant polarizations and narrow hysteresis.Thus,these materials offer high-energy density and efficiency,making them suitable for energy storage applications.Despite significant advancements in experimental research,understanding of the properties associated with structure remains incomplete.This study aims to study the structural,electric,and mechanical performances at various scales of the high-entropy(Na_(0.2)Bi_(0.2)Ca_(0.2)Sr_(0.2)Ba_(0.2))TiO_(3)(NBCSB)material.The results of first-principles calculations indicated that the pseudo-intralayer distortion was obviously smaller compared to the interlayer distortion.Among the various bonds,Bi-O,Ca-O,and Na-O experienced the greatest displacement.Similarly,the hybridization between O 2p and Ti 3d states with Bi 6p states was particularly strong,affecting both the ferroelectric polarization and relaxor behavior.The NBCSB materials produced using a typical solid-state process demonstrated exceptional performance in energy storage with a recoverable density of 1.53 J·cm^(-3)and a high efficiency of 89%when subjected to a small electric field of 120 kV·cm^(-1).In addition,these ceramics displayed a remarkable hardness of around 7.23 GPa.NBCSB ceramics exhibited exceptional relaxation characteristics with minimal hysteresis and low remanent polarization due to its nanoscale high dynamic polarization configuration with diverse symmetries(rhombohedral,tetragonal,and cubic)resulting from randomly dispersed A-site ions.The excellent mechanical property is related to the dislocation-blocking effect,solid solution strengthening effect,and domain boundary effect.The findings of this study offer a comprehensive and novel perspective on A-site disordered high-entropy relaxor ferroelectric ceramics. 展开更多
关键词 High entropy Crystal distortion Na_(0.2)Bi_(0.2)Ca_(0.2)Sr_(0.2)Ba_(0.2)TiO_(3) Polar nanoregions(PNRs) HARDNESS Energy storage property
原文传递
On uncertainty of elastic modulus measurements via nanoindentation mechanical testing and conventional triaxial testing
20
作者 Zhidi Wu Eric Edelman +2 位作者 Kathleen Ritterbush Yanbo Wang Brian McPherson 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4700-4714,共15页
Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ... Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling. 展开更多
关键词 Elastic modulus Nanoindentation test Triaxial test Scratch test Uncertainty source Uncertainty quantification Pore space
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部