To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amo...To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amount dispensed in each cycle. Taking account of gas compressibility, an intelligent model-based control strategy is proposed to compensate the deviation of adhesive amount dispensed from the desired one. Both simulations and experiments show that the dispensing consistency is greatly improved by using the model-based control strategy developed in this paper.展开更多
Increasing demands such as low friction,low wear rate,and long life-time have reached the limits of single DLC coatings.In order to meet the requirements,we propose to use an integrated approach to improve the wear pr...Increasing demands such as low friction,low wear rate,and long life-time have reached the limits of single DLC coatings.In order to meet the requirements,we propose to use an integrated approach to improve the wear property of an engineering surface.Firstly,dimples are introduced perpendicular to an engineering surface by a Nd:YAG laser emitting at 1064 nm.Subsequently,solid lubricant DLC is prepared on the patterned surface by magnetron sputtering technique.The effect of dimple densities from 7%to 45 %on tribological properties of the coating surface was revealed.The wear performance of the textured DLC surfaces was studied by a pin-on-disk reciprocating sliding wear tester under boundary lubrication and dry conditions.The results showed that the DLC coatings with appropriate dimple densities have an obvious improvement on wear performance in term of friction coefficient,wear rate and wear life,as compared to un-textured DLC coatings.In boundary lubrication conditions,the improved wear performance can be explained by the promotion of reservoirs to enhance lubricant retention during sliding.In dry condition,the dimples trap wear particles and leave a free interface between pin and sliding contact surface,and avoid the surface worn by abrasive manner,thereby improving the wear performance of the DLC coating.展开更多
To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acq...To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acquisition, knowledge representation and reasoning used in CNC programming were researched. The CNC programming system functional architecture of impeller parts based on knowledge based engineering(KBE) was constructed. The structural model of the general knowledge-based system(KBS) was also constructed. The KBS of CNC programming system was established through synthesizing database technology and knowledge base theory. And in the context of corporate needs, based on the knowledge-driven manufacturing platform(i.e. UG CAD/CAM), VC++6.0 and UG/Open, the KBS and UG CAD/CAM were integrated seamlessly and the intelligent CNC programming KBE system for the impeller parts was developed by integrating KBE and UG CAD/CAM system. A method to establish standard process templates was proposed, so as to develop the intelligent CNC programming system in which CNC machining process and process parameters were standardized by using this KBE system. For the impeller parts processing, the method applied in the development of the prototype system is proven to be viable, feasible and practical.展开更多
Environmental conscious manufacturing has become an important issue in industry because of market pressure and environmental regulations. An environmental risk assessment model was developed based on the network analy...Environmental conscious manufacturing has become an important issue in industry because of market pressure and environmental regulations. An environmental risk assessment model was developed based on the network analytic method and fuzzy set theory. The "interval analysis method" was applied to deal with the on site monitoring data as basic information for assessment. In addition, the fuzzy set theory was employed to allow uncertain, interactive and dynamic information to be effectively incorporated into the environmental risk assessment. This model is a simple, practical and effective tool for evaluating the environmental risk of manufacturing industry and for analyzing the relative impacts of emission wastes, which are hazardous to both human and ecosystem health. Furthermore, the model is considered useful for design engineers and decision maker to design and select processes when the costs, environmental impacts and performances of a product are taken into consideration.展开更多
Recently,the application of wire-arc additive manufacturing(WAAM)for the production of metallic products is gaining traction.WAAM is associated with the direct energy deposition technique and therefore has a higher de...Recently,the application of wire-arc additive manufacturing(WAAM)for the production of metallic products is gaining traction.WAAM is associated with the direct energy deposition technique and therefore has a higher deposition rate(approximately 4 kg/h).For this reason,it is of greater interest than powder-based additive manufacturing techniques.Industrial applications such as marine and offshore structures and pressure vessels for space programs commonly utilize high-strength low-alloy(HSLA)steel.HSLA steel components produced by casting methods exhibit defects due to oxidation.Therefore,cold metal transfer(CMT)-WAAM was adopted in this study to fabricate HSLA steel components.The metallurgical properties were analyzed using microscopic and diffraction techniques.The effects of the evolved microstructures on mechanical properties,such as strength,microhardness,and elongation to fracture,were evaluated.To analyze and test the structure,two regions were selected,namely,top and bottom.Microstructural analyses revealed that both regions were primarily composed of acicular ferrite,polygonal ferrite,and bainitic structures.The bottom region exhibited superior mechanical properties compared with the top region.The improved strength at the bottom region can be ascribed to the formation of a high density of dislocations and finer grains.展开更多
The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model par...The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model parts. The model parts were 3D printed using FDM technology and the ZMorph 2.0 hybrid 3D printer. The accuracy of 3D printing of the model part influences the realization of modular devices. In recent years, technology has evolved a lot, and the need to have the most efficient manufacturing equipment has increased. This is the reason for the development of 3D printers using FDM technology for plastic parts. The software used by these 3D printers used in FDM technology is very sophisticated, as they allow the manufacture of very precise 3D prototypes, identical to the designed 3D model, through modern additive manufacturing techniques. The quality and mechanical strength of the prototypes obtained using 3D printers is very good. The materials used by the 3D printers manufactured by FDM are cheap and accessible. These 3D printers are used to make three-dimensional objects (gears, flanges, bearings, covers, casings, mechanisms, figurines, interior and exterior design elements, architectural models, medical models).展开更多
The basic theory of YOLO series object detection algorithms is discussed, the dangerous driving behavior dataset is collected and produced, and then the YOLOv7 network is introduced in detail, the deep separable convo...The basic theory of YOLO series object detection algorithms is discussed, the dangerous driving behavior dataset is collected and produced, and then the YOLOv7 network is introduced in detail, the deep separable convolution and CA attention mechanism are introduced, the YOLOv7 bounding box loss function and clustering algorithm are optimized, and the DB-YOLOv7 network structure is constructed. In the first stage of the experiment, the PASCAL VOC public dataset was utilized for pre-training. A comparative analysis was conducted to assess the recognition accuracy and inference time before and after the proposed improvements. The experimental results demonstrated an increase of 1.4% in the average recognition accuracy, alongside a reduction in the inference time by 4 ms. Subsequently, a model for the recognition of dangerous driving behaviors was trained using a specialized dangerous driving behavior dataset. A series of experiments were performed to evaluate the efficacy of the DB-YOLOv7 algorithm in this context. The findings indicate a significant enhancement in detection performance, with a 4% improvement in accuracy compared to the baseline network. Furthermore, the model’s inference time was reduced by 20%, from 25 ms to 20 ms. These results substantiate the effectiveness of the DB-YOLOv7 recognition algorithm for detecting dangerous driving behaviors, providing comprehensive validation of its practical applicability.展开更多
AA 6061-T6 aluminium alloy(Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high specific strength and good corrosion resistance.Compared with the fusion welding p...AA 6061-T6 aluminium alloy(Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high specific strength and good corrosion resistance.Compared with the fusion welding processes that are routinely used for joining structural aluminium alloys,friction stir welding(FSW) process is an emerging solid state joining process in which the material welded does not melt and recast.Joint strength is influenced by the grain size and tensile strength of the weld nugget region.Hence,an attempt was made to develop empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints.The empirical relationships are developed by response surface methodology(RSM) incorporating FSW tool and process parameters.A linear regression relationship was also established between grain size and tensile strength of the weld nugget of FSW joints.展开更多
This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir weld...This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.展开更多
AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects o...AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects of three welding processes on the tensile, fatigue and corrosion behaviour were studied. Microstructure analysis was carried out using optical and electron microscopes. The results show that the FSW joints exhibit superior tensile and fatigue properties compared to EBW and GTAW joints. It is also found that the friction stir welds show lower corrosion resistance than EB and GTA welds. This is mainly due to the presence of finer grains and uniform distribution of strengthening precipitates in the weld metal of FSW joints.展开更多
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, dis...Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.展开更多
The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-f...The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-ferrous metals which offers great potential application in aerospace, biomedical and chemical industries, because of its low density (4.5 g/cm^3), excellent corrosion resistance, high strength, attractive fracture behaviour and high melting point (1678℃). The preferred welding process for titanium alloy is frequent GTA welding due to its comparatively easier applicability and better economy. In the case of single pass (GTA) welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one needs to carefully balance various pulse current parameters to reach an optimum combination. Four factors, five level, central composite, rotatable design matrix were used to optimize the required number of experimental conditions. Mathematical models were developed to predict the fusion zone grain size using analysis of variance (ANOVA) and regression analysis. The developed models were optimized using the traditional Hooke and Jeeve's algorithm. Experimental results were provided to illustrate the proposed approach.展开更多
Inner wrinkling phenomenon is more likely to develop during hydrodynamic deep drawing (HDD) of complicated component-forms due to the higher demand for controlling deformation sequences. Aiming at the problems in co...Inner wrinkling phenomenon is more likely to develop during hydrodynamic deep drawing (HDD) of complicated component-forms due to the higher demand for controlling deformation sequences. Aiming at the problems in control of inner wrinkling for an irregular surface part featured with both concavity and convex, this research proposes an optimal design method of drawbead parameters to change the material flow. According to theoretical analysis of the mechanism of inner wrinkling, optimizing cavity pressure only is unreasonable to form a wrinkle-free deep-drawn part, so semi-circular drawbeads are employed. The effects of layout and height of drawbeads on forming results are discussed, and a process window is established based on evaluation indicators including the anti-wrinkle coefficient and the minimum wall thickness. Experiments are carried out to validate the process window, and the wall thickness and the wrinkle height are measured and compared with numerical findings. The results show that the anti-wrinkle ability of drawbeads weakens with increasing oblique angle and distance from the die center, while the wall thickness increases with increasing oblique angle and distance, and the inner wrinkling can be completely suppressed by drawbeads arranged in zones I and II with optimum penetration.展开更多
In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are so...In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.展开更多
The mechanical behavior of 2124 Al alloy produced by powder metallurgy was investigated with compression test at different temperatures and strain rates. The tests were performed in the temperature range of 300℃~500...The mechanical behavior of 2124 Al alloy produced by powder metallurgy was investigated with compression test at different temperatures and strain rates. The tests were performed in the temperature range of 300℃~500℃ and at strain rates from 0.001 s^-1 to 1.0 s^-1. The compression flow curves exhibited an initial sharp increase with strain, followed by monotonous hardening. The maximum stress decreased with decreasing strain rate and increasing temperature. The hot deformation characteristics of the material were studied using processing maps. The domain of safety and unsafe regime were identified and validated through microstructural examination.展开更多
The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time an...The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time and mass fraction of TiB2. The in-situ casting was carried out based on three-factor five-level central composite rotatable design using response surface methodology (RSM). The validation of the model was carried out using ANOVA. The mathematical models developed for the mechanical properties were predicted at 95% confidence limit.展开更多
Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat tre...Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.展开更多
The microstructure analysis and mechanical properties evaluation of laser beam welded AISI 409M ferritic stainless steel joints are investigated. Single pass autogeneous welds free of volumetric defects were produced ...The microstructure analysis and mechanical properties evaluation of laser beam welded AISI 409M ferritic stainless steel joints are investigated. Single pass autogeneous welds free of volumetric defects were produced at a welding speed of 3 000 mm/min. The joints were subjected to optical microscope, scanning electron fractographe, microhardness, transverse and longitudinal tensile, bend and charpy impact toughness testing. The coarse ferrite grains in the base metal were changed into dendritic grains as a result of rapid solidification of laser beam welds. Tensile testing indicates overmatching of the weld metal is relative to the base metal. The joints also exhibited acceptable impact toughness and bend strength properties.展开更多
Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy beca...Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts.展开更多
基金This work was supported by National Natural Science Foundation of China (No.50390063,50390064)the National Basic Research Program of China (973 Program) (No.2003CB716207).
文摘To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amount dispensed in each cycle. Taking account of gas compressibility, an intelligent model-based control strategy is proposed to compensate the deviation of adhesive amount dispensed from the desired one. Both simulations and experiments show that the dispensing consistency is greatly improved by using the model-based control strategy developed in this paper.
基金The work described in this article was fully supported by Strategic Research Grant(SRG)(project no.7002580)of the City University of Hong Kong
文摘Increasing demands such as low friction,low wear rate,and long life-time have reached the limits of single DLC coatings.In order to meet the requirements,we propose to use an integrated approach to improve the wear property of an engineering surface.Firstly,dimples are introduced perpendicular to an engineering surface by a Nd:YAG laser emitting at 1064 nm.Subsequently,solid lubricant DLC is prepared on the patterned surface by magnetron sputtering technique.The effect of dimple densities from 7%to 45 %on tribological properties of the coating surface was revealed.The wear performance of the textured DLC surfaces was studied by a pin-on-disk reciprocating sliding wear tester under boundary lubrication and dry conditions.The results showed that the DLC coatings with appropriate dimple densities have an obvious improvement on wear performance in term of friction coefficient,wear rate and wear life,as compared to un-textured DLC coatings.In boundary lubrication conditions,the improved wear performance can be explained by the promotion of reservoirs to enhance lubricant retention during sliding.In dry condition,the dimples trap wear particles and leave a free interface between pin and sliding contact surface,and avoid the surface worn by abrasive manner,thereby improving the wear performance of the DLC coating.
基金Project(12ZT14)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acquisition, knowledge representation and reasoning used in CNC programming were researched. The CNC programming system functional architecture of impeller parts based on knowledge based engineering(KBE) was constructed. The structural model of the general knowledge-based system(KBS) was also constructed. The KBS of CNC programming system was established through synthesizing database technology and knowledge base theory. And in the context of corporate needs, based on the knowledge-driven manufacturing platform(i.e. UG CAD/CAM), VC++6.0 and UG/Open, the KBS and UG CAD/CAM were integrated seamlessly and the intelligent CNC programming KBE system for the impeller parts was developed by integrating KBE and UG CAD/CAM system. A method to establish standard process templates was proposed, so as to develop the intelligent CNC programming system in which CNC machining process and process parameters were standardized by using this KBE system. For the impeller parts processing, the method applied in the development of the prototype system is proven to be viable, feasible and practical.
文摘Environmental conscious manufacturing has become an important issue in industry because of market pressure and environmental regulations. An environmental risk assessment model was developed based on the network analytic method and fuzzy set theory. The "interval analysis method" was applied to deal with the on site monitoring data as basic information for assessment. In addition, the fuzzy set theory was employed to allow uncertain, interactive and dynamic information to be effectively incorporated into the environmental risk assessment. This model is a simple, practical and effective tool for evaluating the environmental risk of manufacturing industry and for analyzing the relative impacts of emission wastes, which are hazardous to both human and ecosystem health. Furthermore, the model is considered useful for design engineers and decision maker to design and select processes when the costs, environmental impacts and performances of a product are taken into consideration.
文摘Recently,the application of wire-arc additive manufacturing(WAAM)for the production of metallic products is gaining traction.WAAM is associated with the direct energy deposition technique and therefore has a higher deposition rate(approximately 4 kg/h).For this reason,it is of greater interest than powder-based additive manufacturing techniques.Industrial applications such as marine and offshore structures and pressure vessels for space programs commonly utilize high-strength low-alloy(HSLA)steel.HSLA steel components produced by casting methods exhibit defects due to oxidation.Therefore,cold metal transfer(CMT)-WAAM was adopted in this study to fabricate HSLA steel components.The metallurgical properties were analyzed using microscopic and diffraction techniques.The effects of the evolved microstructures on mechanical properties,such as strength,microhardness,and elongation to fracture,were evaluated.To analyze and test the structure,two regions were selected,namely,top and bottom.Microstructural analyses revealed that both regions were primarily composed of acicular ferrite,polygonal ferrite,and bainitic structures.The bottom region exhibited superior mechanical properties compared with the top region.The improved strength at the bottom region can be ascribed to the formation of a high density of dislocations and finer grains.
文摘The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model parts. The model parts were 3D printed using FDM technology and the ZMorph 2.0 hybrid 3D printer. The accuracy of 3D printing of the model part influences the realization of modular devices. In recent years, technology has evolved a lot, and the need to have the most efficient manufacturing equipment has increased. This is the reason for the development of 3D printers using FDM technology for plastic parts. The software used by these 3D printers used in FDM technology is very sophisticated, as they allow the manufacture of very precise 3D prototypes, identical to the designed 3D model, through modern additive manufacturing techniques. The quality and mechanical strength of the prototypes obtained using 3D printers is very good. The materials used by the 3D printers manufactured by FDM are cheap and accessible. These 3D printers are used to make three-dimensional objects (gears, flanges, bearings, covers, casings, mechanisms, figurines, interior and exterior design elements, architectural models, medical models).
文摘The basic theory of YOLO series object detection algorithms is discussed, the dangerous driving behavior dataset is collected and produced, and then the YOLOv7 network is introduced in detail, the deep separable convolution and CA attention mechanism are introduced, the YOLOv7 bounding box loss function and clustering algorithm are optimized, and the DB-YOLOv7 network structure is constructed. In the first stage of the experiment, the PASCAL VOC public dataset was utilized for pre-training. A comparative analysis was conducted to assess the recognition accuracy and inference time before and after the proposed improvements. The experimental results demonstrated an increase of 1.4% in the average recognition accuracy, alongside a reduction in the inference time by 4 ms. Subsequently, a model for the recognition of dangerous driving behaviors was trained using a specialized dangerous driving behavior dataset. A series of experiments were performed to evaluate the efficacy of the DB-YOLOv7 algorithm in this context. The findings indicate a significant enhancement in detection performance, with a 4% improvement in accuracy compared to the baseline network. Furthermore, the model’s inference time was reduced by 20%, from 25 ms to 20 ms. These results substantiate the effectiveness of the DB-YOLOv7 recognition algorithm for detecting dangerous driving behaviors, providing comprehensive validation of its practical applicability.
文摘AA 6061-T6 aluminium alloy(Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high specific strength and good corrosion resistance.Compared with the fusion welding processes that are routinely used for joining structural aluminium alloys,friction stir welding(FSW) process is an emerging solid state joining process in which the material welded does not melt and recast.Joint strength is influenced by the grain size and tensile strength of the weld nugget region.Hence,an attempt was made to develop empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints.The empirical relationships are developed by response surface methodology(RSM) incorporating FSW tool and process parameters.A linear regression relationship was also established between grain size and tensile strength of the weld nugget of FSW joints.
文摘This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.
基金Project DRAO/08/1061356/M1 supported by Aeronautical Research & Development Board (ARDB),New Delhi,India
文摘AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effects of three welding processes on the tensile, fatigue and corrosion behaviour were studied. Microstructure analysis was carried out using optical and electron microscopes. The results show that the FSW joints exhibit superior tensile and fatigue properties compared to EBW and GTAW joints. It is also found that the friction stir welds show lower corrosion resistance than EB and GTA welds. This is mainly due to the presence of finer grains and uniform distribution of strengthening precipitates in the weld metal of FSW joints.
基金The Director,Naval Material Research Laboratory(NMRL),Ambernath for financial support through CARS project No:G8/15250/2011 dated29.02.2012
文摘Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.
文摘The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-ferrous metals which offers great potential application in aerospace, biomedical and chemical industries, because of its low density (4.5 g/cm^3), excellent corrosion resistance, high strength, attractive fracture behaviour and high melting point (1678℃). The preferred welding process for titanium alloy is frequent GTA welding due to its comparatively easier applicability and better economy. In the case of single pass (GTA) welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one needs to carefully balance various pulse current parameters to reach an optimum combination. Four factors, five level, central composite, rotatable design matrix were used to optimize the required number of experimental conditions. Mathematical models were developed to predict the fusion zone grain size using analysis of variance (ANOVA) and regression analysis. The developed models were optimized using the traditional Hooke and Jeeve's algorithm. Experimental results were provided to illustrate the proposed approach.
基金supported by Chengdu Aircraft Industrial Corporation
文摘Inner wrinkling phenomenon is more likely to develop during hydrodynamic deep drawing (HDD) of complicated component-forms due to the higher demand for controlling deformation sequences. Aiming at the problems in control of inner wrinkling for an irregular surface part featured with both concavity and convex, this research proposes an optimal design method of drawbead parameters to change the material flow. According to theoretical analysis of the mechanism of inner wrinkling, optimizing cavity pressure only is unreasonable to form a wrinkle-free deep-drawn part, so semi-circular drawbeads are employed. The effects of layout and height of drawbeads on forming results are discussed, and a process window is established based on evaluation indicators including the anti-wrinkle coefficient and the minimum wall thickness. Experiments are carried out to validate the process window, and the wall thickness and the wrinkle height are measured and compared with numerical findings. The results show that the anti-wrinkle ability of drawbeads weakens with increasing oblique angle and distance from the die center, while the wall thickness increases with increasing oblique angle and distance, and the inner wrinkling can be completely suppressed by drawbeads arranged in zones I and II with optimum penetration.
文摘In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.
文摘The mechanical behavior of 2124 Al alloy produced by powder metallurgy was investigated with compression test at different temperatures and strain rates. The tests were performed in the temperature range of 300℃~500℃ and at strain rates from 0.001 s^-1 to 1.0 s^-1. The compression flow curves exhibited an initial sharp increase with strain, followed by monotonous hardening. The maximum stress decreased with decreasing strain rate and increasing temperature. The hot deformation characteristics of the material were studied using processing maps. The domain of safety and unsafe regime were identified and validated through microstructural examination.
文摘The mathematical models were developed to predict the ultimate tensile strength (UTS) and hardness of Al/TiB2 MMCs fabricated by in situ reaction process. The process parameters include temperature, reaction time and mass fraction of TiB2. The in-situ casting was carried out based on three-factor five-level central composite rotatable design using response surface methodology (RSM). The validation of the model was carried out using ANOVA. The mathematical models developed for the mechanical properties were predicted at 95% confidence limit.
基金the support extended by the Centre for Materials Joining & Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, India to carry out this research
文摘Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.
文摘The microstructure analysis and mechanical properties evaluation of laser beam welded AISI 409M ferritic stainless steel joints are investigated. Single pass autogeneous welds free of volumetric defects were produced at a welding speed of 3 000 mm/min. The joints were subjected to optical microscope, scanning electron fractographe, microhardness, transverse and longitudinal tensile, bend and charpy impact toughness testing. The coarse ferrite grains in the base metal were changed into dendritic grains as a result of rapid solidification of laser beam welds. Tensile testing indicates overmatching of the weld metal is relative to the base metal. The joints also exhibited acceptable impact toughness and bend strength properties.
文摘Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected zone after welding. The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. In this investigation, an attempt was made to determine a suitable consumable to replace expensive austenitic consumables. Two different consumables, namely, austenitie stain less steel and low hydrogen ferritic steel, were used to fabricate the joints by shielded metal are welding (SMAW) and flux cored arc welding (FCAW) processes. The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties, whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness, irrespective of the welding process used. The SMAW joints exhibited superior mechanical and impact properties, irrespective of the consumables used, than their FCAW counterparts.