期刊文献+
共找到553篇文章
< 1 2 28 >
每页显示 20 50 100
Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung,Indonesia 被引量:2
1
作者 Rustadi I Gede Boy Darmawan +2 位作者 Nandi Haerudin Agus Setiawan Suharno 《Journal of Groundwater Science and Engineering》 2022年第1期10-18,共9页
The presence of hard rock in Mount Betung has caused the misalignment of the groundwater aquifers,and resulted in many drilling failures for groundwater.An integrated geophysics method using gravity survey and Geoelec... The presence of hard rock in Mount Betung has caused the misalignment of the groundwater aquifers,and resulted in many drilling failures for groundwater.An integrated geophysics method using gravity survey and Geoelectric Vertical Electrical Soundings(VES)were conducted to study the effect of basement and hard rock on groundwater prospects.From the gravity method,38 mapping points were carried out randomly,with a distance of 1-2 km in-between.Meanwhile,from the geoelectric method,51 VES points were acquired at the foot of Mount Betung.The acquisition was conducted with a Schlumberger configuration with AB/2=1 m to 250 m.The results show the Bouguer Anomaly in the west is 50-68 mgal due to the presence of hard rock in Mount Betung.This anomaly responds to relatively shallow hard rocks near surface.Hard rocks composed of andesite and breccia normally present at the depth of 5-180 m during well construction.Resistivity isopach mapping from VES data(at AB/2=50 m,100 m,and 150 m)shows the dominant constituents of hard rock.Fractures in hard rock contribute to secondary porosity,which could be a prospect zone that transmit groundwater.This finding shows that the fractures are randomly scattered,causing several well failures that have been worked.Furthermore,the fractures in the hard rock at the foot of Mount Betung acts as conduits between recharge at Mount Betung and the aquifer in the Bandar Lampung Basin. 展开更多
关键词 GEOELECTRIC GRAVITY GROUNDWATER HARD ROCKS VES
在线阅读 下载PDF
Four Color Theorem and Applied Geophysics
2
作者 Lev V. Eppelbaum 《Applied Mathematics》 2014年第4期658-666,共9页
A selection of a number of geophysical methods to solve different geological, geodynamical, environmental, archaeological and other problems usually has no theoretical substantiation. The solution to this “four color... A selection of a number of geophysical methods to solve different geological, geodynamical, environmental, archaeological and other problems usually has no theoretical substantiation. The solution to this “four color” mathematical problem is able to assume that two independent geophysical methods are sufficient theoretically to characterize the geological-geophysical peculiarities of the area under study. 展开更多
关键词 Logical-Heuristic Model GEOPHYSICAL Method Integration GEOPHYSICAL Map COLORING
在线阅读 下载PDF
Integrating well logs,3D seismic,and earthquake data for comprehensive prediction of 3D in-situ stress orientations:A case study from the Weiyuan area in the Sichuan Basin,China 被引量:1
3
作者 Huan Cao Yang Zhao +4 位作者 Hai-Chao Chen Le-Le Zhang Cheng-Gang Xian Ji-Dong Yang Lu Liu 《Petroleum Science》 2025年第1期210-221,共12页
Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(F... Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations. 展开更多
关键词 In-situ stress orientation SHmax Azimuthal velocity anisotropy Focal source mechanism Formation micro-imager
原文传递
An investigation on the wind profiles and gravity wave dynamics in MLT region based on the meteor radars from the Meridian Project
4
作者 Tai Liu Zhe Wang +2 位作者 MengXi Shi Willie Soon ShiCan Qiu 《Earth and Planetary Physics》 EI CAS 2025年第1期29-38,共10页
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri... The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km. 展开更多
关键词 meteor radar wind field gravity wave Lomb−Scargle method
在线阅读 下载PDF
The Scientific Impotence of Modern Seismology. Causes of Decline and Necessary Measures for the Revival of Earthquake Science
5
作者 Serguei Bychkov 《Open Journal of Earthquake Research》 2025年第1期1-6,共6页
It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a relian... It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a reliance on methods that resemble divination rather than sound scientific inquiry. Despite efforts to understand seismic phenomena over the past three centuries [1], progress in seismology has been perceived as somewhat stagnant. Criticisms have been raised about certain theories, such as Mr. Reid’s Elastic Recoil theory from 1910 [2], and its purported advancements in comprehending seismic processes. While acknowledging various perspectives on this matter [3]-[7], it is important to reflect on the historical context and potential limitations in our understanding. Addressing concerns raised within the discipline involves examining educational practices and fostering a rigorous academic environment to promote scientific excellence. This article aims to explore the underlying factors contributing to the current state of seismology, offering insights into overcoming challenges and fostering advancements that benefit the scientific community and society as a whole. 展开更多
关键词 Earthquake SEISMOLOGY Elastic Recoil Earth Sciences
在线阅读 下载PDF
Mesospheric tide comparisons at low latitudes observed by two collocated meteor radars
6
作者 Jian Li Wen Yi +6 位作者 XiangHui Xue Jie Zeng HaiLun Ye JianYuan Wang JinSong Chen Na Li TingDi Chen 《Earth and Planetary Physics》 EI CAS 2025年第1期54-68,共15页
Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesospher... Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesosphere tidal results obtained from two adjacent meteor radars at low latitudes in Kunming,China,from November 2013 to December 2014.These two radars operate at different frequencies of 37.5 MHz and 53.1 MHz,respectively.However,overall good agreement is observed between the two radars in terms of horizontal winds and tide observations.The results show that the dominant tidal waves of the zonal and meridional winds are diurnal and semidiurnal tides.Moreover,we conduct an exhaustive statistical analysis to compare the tidal amplitudes and vertical wavelengths recorded by the dual radar systems,which reveals a high degree of alignment in tidal dynamics.The investigation includes variances and covariances of tidal amplitudes,which demonstrate remarkable consistency across measurements from both radars.This finding highlights clear uniformity in the mesospheric tidal patterns observed at low latitudes by the two neighboring meteor radars.Results of the comparative analysis specifically underscore the significant correlation in vertical wavelength measurements,validating the robustness of radar observations for tidal research. 展开更多
关键词 mesosphere and lower thermosphere region meteor radar mesospheric winds TIDES
在线阅读 下载PDF
Deciphering influential features in the seismic catalog for large earthquake occurrence from a machine learning perspective
7
作者 Jinsu Jang Byung-Dal So +1 位作者 David A.Yuen Sung-Joon Chang 《Artificial Intelligence in Geosciences》 2025年第2期334-347,共14页
The spatiotemporal distribution and magnitude of seismicity collected over decades are crucial for understanding the stress interactions underlying large earthquakes.In this study,machine learning(ML)explainers identi... The spatiotemporal distribution and magnitude of seismicity collected over decades are crucial for understanding the stress interactions underlying large earthquakes.In this study,machine learning(ML)explainers identify and rank the features that distinguish Large Earthquake Occurrence(LEO)from non-LEO spatiotemporal windows.Seventy-eight statistics related to time,latitude,longitude,depth,and magnitude were extracted from the earthquake catalog(Global Centroid Moment Tensor)to produce 202,706 spatiotemporally discretized windows.ML explainers trained on these windows revealed the maximum magnitude(Mmax)as the most influential feature.Classification performance improved when the maximum inter-event time,the average interevent time,and the minimum ratio of focal depth to magnitude were jointly trained with Mmax.The top five features showed weak-to-moderate correlations,providing complementary information to the ML explainers.Our explainable ML framework can be extended to different earthquake catalogs,including those with focal mechanisms and smallmagnitude events. 展开更多
关键词 Earthquake catalog Explainable machine learning Feature importance XGBoost classifiers SHAP values
在线阅读 下载PDF
Effective pure qP-wave equation and its numerical implementation in the time-space domain for 3D complicated anisotropic media
8
作者 Shi-Gang Xu Xing-Guo Huang Li Han 《Petroleum Science》 2025年第4期1534-1547,共14页
Seismic anisotropy has been extensively acknowledged as a crucial element that influences the wave propagation characteristic during wavefield simulation,inversion and imaging.Transversely isotropy(TI)and orthorhombic... Seismic anisotropy has been extensively acknowledged as a crucial element that influences the wave propagation characteristic during wavefield simulation,inversion and imaging.Transversely isotropy(TI)and orthorhombic anisotropy(OA)are two typical categories of anisotropic media in exploration geophysics.In comparison of the elastic wave equations in both TI and OA media,pseudo-acoustic wave equations(PWEs)based on the acoustic assumption can markedly reduce computational cost and complexity.However,the presently available PWEs may experience SV-wave contamination and instability when anisotropic parameters cannot satisfy the approximated condition.Exploiting pure-mode wave equations can effectively resolve the above-mentioned issues and generate pure P-wave events without any artifacts.To further improve the computational accuracy and efficiency,we develop two novel pure qP-wave equations(PPEs)and illustrate the corresponding numerical solutions in the timespace domain for 3D tilted TI(TTI)and tilted OA(TOA)media.First,the rational polynomials are adopted to estimate the exact pure qP-wave dispersion relations,which contain complicated pseudo-differential operators with irrational forms.The polynomial coefficients are produced by applying a linear optimization algorithm to minimize the objective function difference between the expansion formula and the exact one.Then,the developed optimized PPEs are efficiently implemented using the finite-difference(FD)method in the time-space domain by introducing a scalar operator,which can help avoid the problem of spectral-based algorithms and other calculation burdens.Structures of the new equations are concise and corresponding implementation processes are straightforward.Phase velocity analyses indicate that our proposed optimized equations can lead to reliable approximation results.3D synthetic examples demonstrate that our proposed FD-based PPEs can produce accurate and stable P-wave responses,and effectively describe the wavefield features in complicated TTI and TOA media. 展开更多
关键词 Anisotropic media Wavefield extrapolation Pure qP-wave equation Optimization algorithm Finite-difference method Time-space domain
原文传递
Seismotectonics of the Kuhbanan fault zone analyzed through spatial distribution of fractal dimensions
9
作者 Abolfazl MOKHTARI Seyed Davoud MOHAMMADI Saeed ZAREI 《Journal of Mountain Science》 2025年第2期436-450,共15页
Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fau... Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fault data along the Kuhbanan fault zone in southeastern Iran by applying the boxcounting method and observing the changes in Coulomb stress and tried to find the potential triggering parts.The entire region was divided into 16subzones with the box-counting method,and then the fractal dimension(D)in each zone was calculated.The analysis of the fractal dimension for active faults and earthquake epicenters along with the seismicity parameter(b)and their ratio in the Kuhbanan region indicates an imbalance between seismic fractals and faults.This finding suggests that the area may have the potential for future earthquakes or hidden faults.In conjunction with b-value and changes in Coulomb stress change,D-value analysis reveals intense tectonic activity and stress accumulation,particularly within the Ravar,Zarand,and Kianshahr sections.It may be considered a potential location for future earthquakes.The changes in Coulomb stress resulting from the 2005Dahuieh earthquake have also placed this region within the stress accumulation zone,potentially triggering the mentioned areas.This integrative approach,backed by historical earthquake data,highlights the impact of fault geometry and stress dynamics,offering an enhanced framework for earthquake forecasting and seismic risk mitigation applicable to other tectonically active areas within the Iranian plateau. 展开更多
关键词 Tectonic Dynamics Fractal Analysis Seismic Hazard Assessment Active Faults
原文传递
Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia
10
作者 Sulistiani Rachmat Fajar Lubis +2 位作者 I Putu Santikayasa Muh.Taufik Gumilar Utamas Nugraha 《Journal of Groundwater Science and Engineering》 2025年第4期352-370,共19页
Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC chan... Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion. 展开更多
关键词 Groundwater Recharge Climate Change Remote Sensing Socioeconomic Pathways SWAT
在线阅读 下载PDF
Structural mapping and depth configuration of the Sinanpaşa and western Afyon-Akşehir grabens(SW Türkiye)using advanced gravity data interpretation methods
11
作者 ErdinçÖKSÜM Fatma Figen ALTINOGLU Özkan KAFADAR 《Journal of Mountain Science》 2025年第6期2191-2210,共20页
The Afyon-Akşehir and Sinanpaşa grabens,located in the eastern part of the Akşehir-Simav Fault System,are important sedimentary basins in the western Anatolia,Türkiye.This region,particularly the western of Afyon... The Afyon-Akşehir and Sinanpaşa grabens,located in the eastern part of the Akşehir-Simav Fault System,are important sedimentary basins in the western Anatolia,Türkiye.This region,particularly the western of Afyon-Akşehir Graben,is a significant region known for its geothermal potential.The study focuses on analyzing gravity data to identify structural elements and examine the geological structures in the basins.The edge detection and enhancement techniques such as total horizontal gradient,tilt angle of the total horizontal gradient,enhanced dip angle and curvature analysis were used to investigate the structural lineaments in the area.Furthermore,2D/3D gravity modeling techniques were utilized to investigate the sedimentary depths of the Afyon-Akşehir and Sinanpaşa grabens.Based on the findings from the edge detection studies,three distinct linear features were highlighted in addition to previously identified geological structures.3D gravity inversion modeling reveals sedimentary basin depths of up to 470 m in Sinanpaşa Graben and 720 m in the western Afyon-Akşehir Graben.As a result of the structural mapping and 2D/3D gravity modeling studies,a structural uplift that may be linked to geothermal activity was detected among the local depressions in the Afyon-Akşehir Graben.The obtained features may be of potential interest for geothermal exploration;therefore,further investigations using additional geophysical data are recommended. 展开更多
关键词 Afyon-Akşehir Graben Sinanpaşa Graben Gravity Structural lineament Sedimentary depth
原文传递
Far-feld radiation patterns of distributed acoustic sensing in anisotropic media with an explosive source and vertically straight fber
12
作者 Le-Le Zhang Yang Zhao +4 位作者 Lu Liu Ge Jin Cheng-Gang Xian Zhi-Peng Ning Chuang-Yang Wang 《Petroleum Science》 2025年第2期641-652,共12页
Distributed acoustic sensing(DAS)is increasingly used in seismic exploration owing to its wide frequency range,dense sampling and real-time monitoring.DAS radiation patterns help to understand angle response of DAS re... Distributed acoustic sensing(DAS)is increasingly used in seismic exploration owing to its wide frequency range,dense sampling and real-time monitoring.DAS radiation patterns help to understand angle response of DAS records and improve the quality of inversion and imaging.In this paper,we solve the 3D vertical transverse isotropic(VTI)Christoffel equation and obtain the analytical,frst-order,and zero-order Taylor expansion solutions that represent P-,SV-,and SH-wave phase velocities and polarization vectors.These analytical and approximated solutions are used to build the P/S plane-wave expression identical to the far-feld term of seismic wave,from which the strain rate expressions are derived and DAS radiation patterns are thus extracted for anisotropic P/S waves.We observe that the gauge length and phase angle terms control the radiating intensity of DAS records.Additionally,the Bond transformation is adopted to derive the DAS radiation patterns in title transverse isotropic(TTI)media,which exhibits higher complexity than that of VTI media.Several synthetic examples demonstrate the feasibility and effectiveness of our theory. 展开更多
关键词 Distributed acoustic sensing Seismic anisotropy Geophysical methods Numerical solutions
原文传递
An Interpretable and Domain-Informed Real-Time Hybrid Earthquake Early Warning for Ground Shaking Intensity Prediction
13
作者 Jawad Fayaz Rodrigo Astroza Sergio Ruiz 《Engineering》 2025年第6期190-204,共15页
In the face of the unrelenting challenge posed by earthquakes-a natural hazard of unpredictable nature with a legacy of significant loss of life,destruction of infrastructure,and profound economic and social impacts-t... In the face of the unrelenting challenge posed by earthquakes-a natural hazard of unpredictable nature with a legacy of significant loss of life,destruction of infrastructure,and profound economic and social impacts-the scientific community has pursued advancements in earthquake early warning systems(EEWSs).These systems are vital for pre-emptive actions and decision-making that can save lives and safeguard critical infrastructure.This study proposes and validates a domain-informed deep learning-based EEWS called the hybrid earthquake early warning framework for estimating response spectra(HEWFERS),which represents a significant leap forward in the capabilities to predict ground shaking intensity in real-time,aligning with the United Nations’disaster risk reduction goals.HEWFERS ingeniously integrates a domain-informed variational autoencoder for physics-based latent variable(LV)extraction,a feed-forward neural network for on-site prediction,and Gaussian process regression for spatial prediction.Adopting explainable artificial intelligence-based Shapley explanations further elucidates the predictive mechanisms,ensuring stakeholder-informed decisions.By conducting an extensive analysis of the proposed framework under a large database of approximately 14000 recorded ground motions,this study offers insights into the potential of integrating machine learning with seismology to revolutionize earthquake preparedness and response,thus paving the way for a safer and more resilient future. 展开更多
关键词 Domain-informed neural networks Physics-informed neural networks Earthquake early warning Variational autoencoder Bayesian updating Spatial regression Interpretable artificial intelligence
在线阅读 下载PDF
Subducted Paleo-Tethyan Oceanic Slab beneath West Qinling,China Revealed by P-wave Anisotropic Tomography
14
作者 JIA Ruo HE Rizheng +2 位作者 ZHAO Dapeng WU Jianping JIANG Haikun 《Acta Geologica Sinica(English Edition)》 2025年第5期1465-1476,共12页
The subduction and closure history of the Paleo-Tethyan Ocean is of significant importance to the formation of the Alpine-Himalayan orogenic belt.However,in West Qinling,China,the evolution of the subducted Paleo-Teth... The subduction and closure history of the Paleo-Tethyan Ocean is of significant importance to the formation of the Alpine-Himalayan orogenic belt.However,in West Qinling,China,the evolution of the subducted Paleo-Tethyan oceanic slab in the mantle remains unclear.In this work,we determine high-resolution P-wave azimuthal anisotropic tomography of the crust and upper mantle beneath west Qinling by inverting newly collected local and teleseismic data.The local earthquakes are relocated by jointly using permanent and portable stations and weighted by their hypocentral errors during the inversion.Our model reveals a slab-like high P-wave velocity(V_(p))anomaly below 300 km depth and significant depth variations of anisotropy in the upper mantle beneath the West Qinling orogen.By comparing with previous geophysical results and integrating with geological and geochemical findings,we interpret that this high-V_(p)anomaly is most likely the subducted Mianlue oceanic slab preserved in the upper mantle and the mantle transition zone since the early Mesozoic.Beneath the Songpan-Ganzi block and the Longzhong basin,low-V anomalies with weak azimuthal anisotropy suggest a vertical mantle upwelling at a depth of 120 to 200 km,providing positive buoyancy to the subducted oceanic slab and extends its stagnation duration in the upper mantle. 展开更多
关键词 seismic tomography seismic anisotropy Paleo-Tethyan subduction West Qinling orogen Tibetan Plateau
在线阅读 下载PDF
Unifying the Nepal height system and China height system based on gravity frequency shift approach
15
作者 K.C.Shanker Ziyu Shen Wenbin Shen 《Geodesy and Geodynamics》 2025年第2期193-202,共10页
Highly accurate international height reference frames with long-term stability,global consistency,and homogeneity are crucial for monitoring sea level variations,understanding climate change,managing disasters,and sup... Highly accurate international height reference frames with long-term stability,global consistency,and homogeneity are crucial for monitoring sea level variations,understanding climate change,managing disasters,and supporting other applications that benefit scientific research and societal well-being.Currently,there are over 100 local height reference systems worldwide.Unifying these systems is a pivotal step toward constructing international height reference frames.The method introduced in this study-the gravity frequency shift via Satellite Frequency Signal Transfer(SFST)-represents a groundbreaking relativistic geodetic approach,demonstrating its potential to surpass the constraints of conventional techniques.The advent of high-precision optical atomic clocks(OAC)with an accuracy level of 1×10^(-18) has facilitated this method's implementation.The International Association of Geodesy(IAG)has established the International Height Reference System(IHRS)and its practical realization,the International Height Reference Frame(IHRF).Our study focuses on two neighbouring height systems:the China Height System(CHS)and the Nepal Height System(NHS),separated by the Himalayas and the Xizang plateau.We aim to unify these two systems by determining the geopotential and orthometric height differences between their respective height datum stations:the Qingdao Height Datum Station(QHDS)and the Madar Height Datum Station(MHDS)using a simulation experiment with the method mentioned above.Using an OAC with an accuracy of 1×10^(-18),we identified a geopotential difference of-8.348±0.464 m^(2)s^(-2) and an orthometric height difference of 0.786±0.047 m between QHDS and MHDS.These results suggest that the introduced method could unify any two height systems with fewcentimeter-level precision,emphasizing its significance in contributing to the construction of the IHRS/IHRF with today's required precision.In summary,the SFST technique is a novel geodetic method that offers an alternative for height system unification,delivering centimeter-level precision,surpassing traditional methods,and supporting the development of the IHRF. 展开更多
关键词 Vertical reference system Gravity frequency shift SFST IHRF Height system unification
原文传递
Comprehensive assessment of induced seismicity and its implications for the Atatürk dam:Insights from trenching,seismic investigations,and paleo-stress analysis along the Bozova fault in the East Anatolian tectonic regime,Southeast Türkiye
16
作者 Fikret KOCBULUT Mustafa SOFTA +2 位作者 Elif AKGÜN Sinan KOŞAROĞLU Ahmet EFE 《Journal of Mountain Science》 2025年第4期1205-1225,共21页
Earthquakes are predominantly associated with tectonically active regions,yet the rising frequency of seismic events globally has raised concerns about the role of industrial activities,such as fluid injection,convent... Earthquakes are predominantly associated with tectonically active regions,yet the rising frequency of seismic events globally has raised concerns about the role of industrial activities,such as fluid injection,conventional oil-gas,mining,and reservoir impoundment,in triggering significant earthquakes.While natural processes like tectonic stress changes,fluid migration,and surface loading are critical in earthquake nucleation,human-induced seismicity is becoming increasingly recognized.The Atatürk Dam,Türkiye's largest clay-core rockfill dam,situated near the East Anatolian Fault System,Adyaman Fault Zone,and Bozova Fault,offers a compelling case to explore the interplay between tectonic and anthropogenic seismicity.This study presents the first trenching studies along the Bozova Fault,revealing evidence of surface ruptures and localized seismicity linked to reservoir impoundment and conventional oil and gas.Temporal and spatial analyses suggest that reservoir-induced mechanisms,including pore pressure diffusion and stress redistribution,significantly influence seismicity,recurrence interval,alongside dominant tectonic forces.By integrating trenching investigations,seismic analyses,and stress inversion techniques,this research highlights the critical role of anthropogenic factors in modulating seismic hazards.The findings emphasize the importance of paleoseismological and geophysical studies for distinguishing induced seismicity from natural tectonic activity,thereby contributing to improved seismic hazard assessment and mitigation strategies in tectonically active,reservoir-influenced regions. 展开更多
关键词 Induced seismicity Bozova fault Atatürk dam Earthquake mitigation
原文传递
Accelerating Hydrocarbon Maturation: The Role of Metals and Unconventional Resources in the Northeast Java Basin
17
作者 Bagus Sapto Mulyatno Muh Sarkowi +4 位作者 Ordas Dewanto Asep Irawan Suharso Andy Setyo Wibowo Indra Mamad Gandidi 《Energy Engineering》 2025年第8期3099-3116,共18页
Rising global energy needs have intensified the search for unconventional hydrocarbon sources,especially in under-selected areas like the Northeast Java Basin.This region harbors promising unconventional hydrocarbon r... Rising global energy needs have intensified the search for unconventional hydrocarbon sources,especially in under-selected areas like the Northeast Java Basin.This region harbors promising unconventional hydrocarbon reserves,where source rocks function as dual-phase systems for both hydrocarbon generation and storage.This research investigates how metal-based catalysts,particularly iron(Fe),can expedite hydrocarbon maturation in such reservoirs.Combining well logging,geochemical assessments,seismic data,and advanced lab techniques,including X-ray Diffraction(XRD),we pinpoint optimal zones for exploration.Results indicate that the Tuban,Kujung,and Ngimbang formations contain economically viable unconventional deposits,exhibiting tight reservoir properties(permeability:0.01–1 md)and moderate to good Total Organic Carbon(TOC)levels(1%–2%).Spatial analysis reveals elevated density concentrations in the northern sector,indicative of high-viscosity hydrocarbons typical of unconventional plays.Crucially,Fe additives were found to markedly enhance organic matter conversion,shortening maturation periods and boosting hydrocarbon yield.XRD data confirms that Fe alters crystalline configurations,increasing reactivity and speeding up thermal breakdown(shifting immature organic compounds toward maturity at an accelerated rate).These findings contribute to the evolving discourse on unconventional resource exploitation by proposing an innovative recovery enhancement strategy.The study also sets a precedent for investigating metal-assisted hydrocarbon conversion in geologically comparable basins globally. 展开更多
关键词 Unconventional hydrocarbons hydrocarbon maturation metal catalysis geochemical analysis
在线阅读 下载PDF
Moonward deviation of the solar wind
18
作者 Chao Wei Hui Zhang +3 位作者 QuanMing Lu JunYi Ren XiaoWei Ma RunZe Li 《Earth and Planetary Physics》 2025年第6期1157-1162,共6页
The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.... The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought. 展开更多
关键词 plasma-moon interaction moonward deviation IMF connectivity lunar upstream perturbations
在线阅读 下载PDF
Discussion on origin of Pn velocity variationin China and adjacent region 被引量:14
19
作者 裴顺平 许忠淮 汪素云 《地震学报》 CSCD 北大核心 2004年第1期1-10,共10页
Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network ... Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network of China used by WANG, et al. We discussed the relation of Pn velocity variation to Moho depth, Earths heat flow, distribution of Cenozoic volcanic rock and the result of rock experiment under high pressure and high temperature. The result of quantitative analysis indicates that Pn velocity is positively correlated with the crust thickness and negatively correlated with the Earths heat flow. Two linear regression equations, one between Pn velocity and crust thickness, and the other between Pn velocity and heat flow, were obtained. The rate of variation of Pn veloc-ity vP with pressure P, Pv/p, estimated from the velocity variation with crust thickness Hv/p, is close to the result obtained from the rock experiment under high pressure and high temperature. If the effect of crust thick-ness on Pn velocity is deducted from the velocity variation, then the low Pn velocity beneath Qinghai-Xizang pla-teau is more notable. The low Pn velocity regions well agree with the Cenozoic volcanic rock. In the several re-gions with significant anisotropy, the direction of fast Pn velocity is consistent with the orientation of maximum principal crustal compressive stress, and also with the direction of present-day crustal movement. It indicates that the fast Pn velocity direction may be related to the deformation or flow of top mantle material along the direction of maximum pressure. 展开更多
关键词 地震台网 PN波 地壳厚度 新生代 火山岩 各向异性 层析成像
在线阅读 下载PDF
Numerical simulation of dynamic Coulomb stress changes induced by M6.5 earthquake in Wuding, Yunnan and its relationship with aftershocks 被引量:6
20
作者 虎雄林 吴小平 +3 位作者 杨润海 付虹 胡家富 黄雍 《地震学报》 CSCD 北大核心 2008年第1期26-35,共10页
Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequen... Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequent after- shocks. The results show that the spatial distribution patterns of the positive region of dynamic stress peak value and static stress peak value are similarly asymmetric, which are basically identical with distribution features of aftershock. The dynamic stress peak value and the static stress in the positive region are more than 0.1 MPa and 0.01 MPa of the triggering threshold, respectively, which indicates that the dynamic and static stresses are helpful for the occurrence of aftershock. This suggests that both influences of dynamic and static stresses should be con- sidered other than only either of them when studying aftershock triggering in near field. 展开更多
关键词 武定地震 动态库仑破裂应力变化 余震 动态应力触发
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部