During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farm...During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farmers’income if not identified early.Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves.This is an excellent use case for Community Assessment and Treatment Services(CATS)due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.An alternative to conventional Machine Learning(ML)methods,which require manual identification of parameters for exact results,is to develop a prototype that can be classified without pre-processing.To automatically diagnose tomato leaf disease,this research proposes a hybrid model using the Convolutional Auto-Encoders(CAE)network and the CNN-based deep learning architecture of DenseNet.To date,none of the modern systems described in this paper have a combined model based on DenseNet,CAE,and ConvolutionalNeuralNetwork(CNN)todiagnose the ailments of tomato leaves automatically.Themodelswere trained on a dataset obtained from the Plant Village repository.The dataset consisted of 9920 tomato leaves,and the model-tomodel accuracy ratio was 98.35%.Unlike other approaches discussed in this paper,this hybrid strategy requires fewer training components.Therefore,the training time to classify plant diseases with the trained algorithm,as well as the training time to automatically detect the ailments of tomato leaves,is significantly reduced.展开更多
Nitrogen-rich graphitized carbon microspheres(NGCs)with hierarchically porous were constructed by self-assembly.Under different heat treatment conditions,the structure,morphology and properties of NGCs were studied by...Nitrogen-rich graphitized carbon microspheres(NGCs)with hierarchically porous were constructed by self-assembly.Under different heat treatment conditions,the structure,morphology and properties of NGCs were studied by using multiple characterization techniques.The results showed that the chemical microenvironments(e.g.surface chemistry,degree of graphitization and defective,etc.)and microstructures properties(e.g.morphology,specific surface area,particle size,etc.)could be delicately controlled via thermal carbonization processes.The degradation of ofloxacin(OFLX)by NGCs activated peroxymonosulfate(PMS)was studied systematically.It was found that the synergistic coupling effect between optimum N or O bonding species configuration ratio(graphitic N and C=O)and special microstructure was the main reason for the enhanced catalytic activity of NGC-800(calcination temperature at 800°C).Electron paramagnetic resonance(EPR)experiments and radical quenching experiments indicated that the hydroxyl(·OH),sulfate(SO4^·-)and singlet oxygen(^1O_(2))were contributors in the NGC-800/PMS systems.Further investigation of the durability of chemical structures and surface active sites revealed that undergo N bonding species configuration reconstruction and cannibalistic oxidation during PMS activation reaction.The used NGC-800 physicochemical properties could be recovered by heat treatment to achieve the ideal catalytic performance.The findings proposed a valuable insight for catalytic performance and controllable design of construction.展开更多
The effects of wavelength-specific visible light, white light, and ultraviolet-B (UV-B, 280- 315 nm) on selected behaviors, grazing rate, spawning rate, and hatching rate of the marine copepod Calanus sinicus collecte...The effects of wavelength-specific visible light, white light, and ultraviolet-B (UV-B, 280- 315 nm) on selected behaviors, grazing rate, spawning rate, and hatching rate of the marine copepod Calanus sinicus collected from the Yellow Sea were studied. Calanus sinicus placed in a partitioned experimental system responded positively phototaxis to blue-cyan and yellow light but negatively to orange light and UVB. No obvious dodge activity was found among C. sinicus irradiated with <0.005 mW/cm^2 UV-B. Under 0.20, 0.30 and 0.50 mW/cm^2 UV-B radiation, the lethal half times of individuals were 30.47, 2.86, and 1.96 h, respectively. Grazing of C. sinicus was restrained at >0.10 mW/cm^2 UV-B, whereas yellow-red light stimulated grazing. Egg production rate was highest at a white-light intensity of 1.58 mW/cm^2, with an average rate of 10.04 eggs/(female·d). These results are consistent with the observed phenomenon that C. sinicus in the Yellow Sea mostly spawn near dawn. Our results indicate that light intensity and spectrum are important factors affecting the diel vertical migration of C. sinicus under natural conditions in the Yellow Sea.展开更多
This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The m...This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The middle surface of the plate is its symmetrical plane. The mathematical model of the plate is presented. The field of displacements is formulated using the proposed nonlinear hypothesis that generalizes the classical hypotheses. The equations of equilibrium are formulated based on the principle of stationary total potential energy. The proposed mathematical model of the displacements considers the shear effect. The numerical model of the plate is also formulated with a view to verify the analytical one. Numerical calculations are carried out for the chosen family of plates. The values of the critical load obtained by the analytical and numerical methods are compared. The effects of the material properties of the core and the change of the plate radius on the critical load intensity are presented.展开更多
The effects of Mg content on the microstructure and tensile properties of thixoformed A319 alloys were studied. The samples were thixoformed at 50% liquid content and some of the thixoformed samples were subjected to ...The effects of Mg content on the microstructure and tensile properties of thixoformed A319 alloys were studied. The samples were thixoformed at 50% liquid content and some of the thixoformed samples were subjected to the T6 heat treatment. The samples were then examined by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis as well as tensile tests. The results showed that magnesium was able to refine the eutectic silicon in the samples. It was also observed that a compact Al9FeMg3Si5 phase was formed when the magnesium content was 1.0% and 1.5%. The results also revealed that as the magnesium content in the alloy increases, the tensile strengths of the thixoformed alloys also increase. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed A319 heat treated alloy were 298 MPa, 201 MPa and 4.5%, respectively, whereas the values of the thixoformed heat treated alloy with 1.5% Mg content were 325 MPa, 251 MPa and 1.4%, respectively. Thixoformed A319 alloy showed a dimple fracture behaviour, while thixoformed A319 alloys with 1.5% Mg showed a mixed mode fracture behaviour, where dimple and cleavage ruptures were seen on the fracture surface of the samples.展开更多
Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectr...Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectroscopy.The active species in the degradation reaction of rGO-CuO composites under ultrasonic irradiation were detected by electron paramagnetic resonance.On the basis of comparative experiments,the photodegradation mechanisms of two typical dyes,Rhodamine B(Rh B)and methyl orange(MO),were proposed.The results demonstrated that the doped CuO could improve the degradation efficiency.The catalytic degradation efficiency of rGO-CuO(2:1)to rhodamine B(RhB)and methyl orange(MO)reached 90%and 87%respectively,which were 2.1 times and 4.4 times of the reduced graphene oxide.Through the first-principles and other theories,we give the reasons for the enhanced catalytic performance of rGO-CuO:combined with internal and external factors,rGO-CuO under ultrasound could produce more hole and active sites that could interact with the OH·in pollutant molecules to achieve degradation.The rGO-CuO nanocomposite has a simple preparation process and low price,and has a high efficiency of degrading water pollution products and no secondary pollution products.It has a low-cost and high-efficiency application prospect in water pollution industrial production and life.展开更多
Information on the dietary composition and food preferences of the giant jellyfish Nemopilema nomurai is important for understanding the trophic drivers of jellyfish outbreaks and their ecological consequences.We used...Information on the dietary composition and food preferences of the giant jellyfish Nemopilema nomurai is important for understanding the trophic drivers of jellyfish outbreaks and their ecological consequences.We used fatty acid(FA)and stable isotope(SI)biomarkers to analyze the diet of N.nomurai from the Yellow Sea in August 2016.N.nomurai was found at all sampling stations,with abundances ranging from 59 inds./km^(2) to 1651 inds./km^(2).There were no significant differences between large(>80 cm in diameter)and small(20–30 cm in diameter)medusae,either in FA compositions or in SI values,which suggests that large and small jellyfi sh have the same food composition and similar trophic levels.Compared to other zooplanktons,the relatively high levels of C20꞉4n-6 in total FAs(~12%)indicates that organic detritus contributes considerably to the food composition of the jellyfish.The mixed model Stable Isotope Analysis in R(SIAR)revealed that N.nomurai tended to prey on smaller organisms(<1000μm in diameter)which comprised about 70%of its diet.This means the N.nomurai blooms will put high feeding pressure on the small plankton.The similar SI values and FA composition indicates that krill may share the same food resources with N.nomurai,which suggests that the jellyfi sh blooms may affect krill populations as a result of food competition.展开更多
The objectives of this study were to explore alternatives for using fruit waste and sugarcane bagasse as important sources for new products and potential applications in the food industry. Fast foods are part of moder...The objectives of this study were to explore alternatives for using fruit waste and sugarcane bagasse as important sources for new products and potential applications in the food industry. Fast foods are part of modern life, as well as sources for producing biofuels based on biomass. The mineral content and compounds of nutritional interest, such as lipophilic substances, were determined in fruit waste (orange peels, passion fruit, bananas, grapes) and sugarcane bagasse. Significant differences were found in the samples tested, where minerals, such as potassium, nitrogen, zinc and iron, were found in fruit residues (bananas, oranges, passion fruit) and sugarcane bagasse. Banana residues were the most important source of minerals, followed by orange peels. Gas chromatography mass spectrography (GC-MS) analyses of the lipophilic fractions obtained from the plant residues revealed the presence of mostly saturated (palmitic, stearic) and unsaturated (oleic and linoleic) fatty acids, as well as other nutritionally valuable compounds, such as antioxidants (flavones in orange residues). The residues studied here can be used for future research to optimize pretreatment and hydrolysis of biomass for bioethanol production.展开更多
Petroleum and Natural Gas still represent a considerable share in terms of energy consumption in the current global matrix, so that its exploration/exploitation is present in the market and driving activities in locat...Petroleum and Natural Gas still represent a considerable share in terms of energy consumption in the current global matrix, so that its exploration/exploitation is present in the market and driving activities in locations of specific complexities, as the ones along unconventional hydrocarbon resources from the Brazilian pre-salt. The daily cost of well drilling under harsh conditions can exceed US $1 million a day, turning any type of downtime or necessary maintenance during the activities to be very costly, moment in which processes optimization starts to be a key factor in costs reduction. Thus, new technologies and methods in terms of automating and optimizing the processes may be of great advantages, having its impact in total related project costs. In this context, the goal of this research is to allow a computation tool supporting achieving a more efficient drilling process, by means of drilling mechanics parameters choosiness aiming rate of penetration (ROP) maximization and mechanic specific energy (MSE) minimization. Conceptually, driven by the pre-operational drilling test curve trends, the proposed system allows it to be performed with less human influences and being updateable automatically, allowing more precision and time reduction by selecting optimum parameters. A Web Operating System (Web OS) was designed and implemented, running in online servers, granting accessibility to it with any device that has a browser and internet connection. It allows processing the drilling parameters supplied and feed into it, issuing outcomes with optimum values in a faster and precise way, allowing reducing operating time.展开更多
With cloud computing,large chunks of data can be handled at a small cost.However,there are some reservations regarding the security and privacy of cloud data stored.For solving these issues and enhancing cloud computi...With cloud computing,large chunks of data can be handled at a small cost.However,there are some reservations regarding the security and privacy of cloud data stored.For solving these issues and enhancing cloud computing security,this research provides a Three-Layered Security Access model(TLSA)aligned to an intrusion detection mechanism,access control mechanism,and data encryption system.The TLSA underlines the need for the protection of sensitive data.This proposed approach starts with Layer 1 data encryption using the Advanced Encryption Standard(AES).For data transfer and storage,this encryption guarantees the data’s authenticity and secrecy.Surprisingly,the solution employs the AES encryption algorithm to secure essential data before storing them in the Cloud to minimize unauthorized access.Role-based access control(RBAC)implements the second strategic level,which ensures specific personnel access certain data and resources.In RBAC,each user is allowed a specific role and Permission.This implies that permitted users can access some data stored in the Cloud.This layer assists in filtering granular access to data,reducing the risk that undesired data will be discovered during the process.Layer 3 deals with intrusion detection systems(IDS),which detect and quickly deal with malicious actions and intrusion attempts.The proposed TLSA security model of e-commerce includes conventional levels of security,such as encryption and access control,and encloses an insight intrusion detection system.This method offers integrated solutions for most typical security issues of cloud computing,including data secrecy,method of access,and threats.An extensive performance test was carried out to confirm the efficiency of the proposed three-tier security method.Comparisons have been made with state-of-art techniques,including DES,RSA,and DUAL-RSA,keeping into account Accuracy,QILV,F-Measure,Sensitivity,MSE,PSNR,SSIM,and computation time,encryption time,and decryption time.The proposed TLSA method provides an accuracy of 89.23%,F-Measure of 0.876,and SSIM of 0.8564 at a computation time of 5.7 s.A comparison with existing methods shows the better performance of the proposed method,thus confirming the enhanced ability to address security issues in cloud computing.展开更多
This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset pr...This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.展开更多
The use of the thermal power plant ashes including fly ash(FA) and bottom ash(BA) for producing unfired building bricks(UBB) using sodium hydroxide(NaOH) solution as an alkaline activator was investigated. A low appli...The use of the thermal power plant ashes including fly ash(FA) and bottom ash(BA) for producing unfired building bricks(UBB) using sodium hydroxide(NaOH) solution as an alkaline activator was investigated. A low applied forming pressure of 0.5 MPa and various NaOH concentrations of 5, 8, 10, and 12 M were used for the preparation of brick samples with different solution-to-binder(S/B) ratios of 0.35 and 0.40. The bricks were subjected to various test programs with reflecting the effect of both NaOH concentrations and S/B ratios on the brick’s properties. The compressive strength, unit weight, ultrasonic pulse velocity, and thermal conductivity of bricks increased with increasing NaOH concentration, whereas the contrary trend was found with increasing S/B ratio. Also, the water absorption of bricks was observed to reduce with increasing NaOH concentration and decreasing S/B ratio. As the results, the combined utilization of both low forming pressure and coal power plant ashes can produce the UBBs with low unit weight, low heat conductivity, and acceptable strength and water absorption rate as stipulated by TCVN 6477-2016. Furthermore, the outcomes of chemical analysis and microstructure observation also demonstrate that a high concentration of the Na OH promoted the geopolymerization process. Notably, the use of NaOH solution of either 10 M or above is recommended for the production of UBBs, which are classified as grade M5.0 or higher.展开更多
Diagnosing data or object detection in medical images is one of the important parts of image segmentation especially those data which is less effective to identify inMRI such as low-grade tumors or cerebral spinal flu...Diagnosing data or object detection in medical images is one of the important parts of image segmentation especially those data which is less effective to identify inMRI such as low-grade tumors or cerebral spinal fluid(CSF)leaks in the brain.The aim of the study is to address the problems associated with detecting the low-grade tumor and CSF in brain is difficult in magnetic resonance imaging(MRI)images and another problem also relates to efficiency and less execution time for segmentation of medical images.For tumor and CSF segmentation using trained light field database(LFD)datasets of MRI images.This research proposed the new framework of the hybrid k-Nearest Neighbors(k-NN)model that is a combination of hybridization of Graph Cut and Support Vector Machine(GCSVM)and Hidden Markov Model of k-Mean Clustering Algorithm(HMMkC).There are four different methods are used in this research namely(1)SVM,(2)GrabCut segmentation,(3)HMM,and(4)k-mean clustering algorithm.In this framework,on the one hand,phase one is to perform the classification of SVM and Graph Cut algorithm to create the maximum margin distance.This research use GrabCut segmentation method which is the application of the graph cut algorithm and extract the data with the help of scaleinvariant features transform.On the other hand,in phase two,segment the low-grade tumors and CSF using a method adapted for HMkC and extract the information of tumor or CSF fluid by GCHMkC including iterative conditional maximizing mode(ICMM)with identifying the range of distant.Comparative evaluation is also performing by the comparison of existing techniques in this research.In conclusion,our proposed model gives better results than existing.This proposed model helps to common man and doctor that can identify their condition of brain easily.In future,this will model will use for other brain related diseases.展开更多
The aim of the research work is to increase the yield of cotton fiber by improving the processing technology of germinated seeds, to improve the quality indicators of seeds and lint. In order to achieve this goal, a m...The aim of the research work is to increase the yield of cotton fiber by improving the processing technology of germinated seeds, to improve the quality indicators of seeds and lint. In order to achieve this goal, a mesh surface device was created to sort the seeds into fractions. Sorting technology was developed on this device and operating modes were determined. In addition, the law of surface distribution of the fractions separated from the cotton stream moving along the surface of the net was determined, and based on the results of practical and theoretical research, a mode of sorting of cotton seeds was developed. As a result, differential equations of the law of oscillation of seeds on parallel bases, taking into account the angle of inclination for the movement of cotton seeds on the sorting surface, were constructed and programmed on a computer to construct the trajectory of seeds. On the basis of the laws of motion, the optimal value of the angle of inclination on the horizontal, which gives the state of sorting of seeds, as well as the values of the amplitude and frequency of vibrations, was determined.展开更多
Annual energy consumption and annual Global Warming Potential (GWP) decreases with the improving of the energy performance of the facade, whereas the embodied energy and embodied GWP increases due to the extra mater...Annual energy consumption and annual Global Warming Potential (GWP) decreases with the improving of the energy performance of the facade, whereas the embodied energy and embodied GWP increases due to the extra material and products applied. This study analyses the relation between the embodied energy and the energy consumption of a house during the life span of the buildings, and the results represented separately in tables and figures. The study uses Life Cycle Assessment (LCA) framework as a tool to conduct a partial LCA, from cradle to site of the construction and energy consumption during usage phase of the buildings with three different wall types through 50 years usage phase. According to this study, laminated timber and aerated concrete are better choices than cast concrete for both types of buildings because of lower density and lower U value.展开更多
The macadamia tree (macadamia integrifolia maiden & betche), originally from Australia, has smooth and rounded fruits, this walnut produces richly flavoured nuts, which are used "in natura" accompanying appetizer...The macadamia tree (macadamia integrifolia maiden & betche), originally from Australia, has smooth and rounded fruits, this walnut produces richly flavoured nuts, which are used "in natura" accompanying appetizers, in the manufacture of candies, being well accepted by the population. This paper analysed the production process of the agro industrial cooperative producers of macadamia nut (Coopmac), located in the town of Sao Mateus-ES/Brazil, and responsible for the production and marketing benefits for the states of Espirito Santo and Bahia. This analysis was performed in order to identify new opportunities for developing new products. The following steps were explored: analysis of the current procedure, ideas generation, analysis of potential ideas, development of a product concept and development of a prototype product. In cooperative, macadamia oil was only extracted. It was decided to develop a potential product from this oil. Initially, chemical analyzes were performed with this oil and opted for the production of soaps, liquid and bar. During this step, the methodology of design of experiments was used to develop the prototype. Sensory analysis, based on the LAM type hedonic scale, was used in the tests. The data were analyzed and could be distinguished the best formulation and the main effects for each assessed parameter. In this step, the statistical analysis software was used. From the value of the overall quality of the sample, greater acceptance for liquid soaps was obtained for a formulation with lower oil volume and higher volume of amphoteric. When concerning the sample bar soaps, the best formulation had the lower ratio of oil volume, the higher volume of amphoteric and lower mass of clay. The authors expect to contribute to generation of scientific and technological knowledge in order to effectively meet the practical needs of efforts directed to the production of macadamia nuts in the state of Espirito Santo.展开更多
基金funded by UKRI EPSRC Grant EP/W020408/1 Project SPRITE+2:The Security,Privacy,Identity,and Trust Engagement Network plus(phase 2)for this studyfunded by PhD project RS718 on Explainable AI through the UKRI EPSRC Grant-funded Doctoral Training Centre at Swansea University.
文摘During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farmers’income if not identified early.Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves.This is an excellent use case for Community Assessment and Treatment Services(CATS)due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.An alternative to conventional Machine Learning(ML)methods,which require manual identification of parameters for exact results,is to develop a prototype that can be classified without pre-processing.To automatically diagnose tomato leaf disease,this research proposes a hybrid model using the Convolutional Auto-Encoders(CAE)network and the CNN-based deep learning architecture of DenseNet.To date,none of the modern systems described in this paper have a combined model based on DenseNet,CAE,and ConvolutionalNeuralNetwork(CNN)todiagnose the ailments of tomato leaves automatically.Themodelswere trained on a dataset obtained from the Plant Village repository.The dataset consisted of 9920 tomato leaves,and the model-tomodel accuracy ratio was 98.35%.Unlike other approaches discussed in this paper,this hybrid strategy requires fewer training components.Therefore,the training time to classify plant diseases with the trained algorithm,as well as the training time to automatically detect the ailments of tomato leaves,is significantly reduced.
基金the National Natural Science Foundation of China(No.51578295)the National Natural Science Foundation of Jiangsu Province(No.BK20161479)+3 种基金Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse(Nanjing University of Science and Technology)Qinglan Project of Jiangsu Province supported this studyFoundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materialsa project funded by the priority academic program development of Jiangsu Higher Education Institutions。
文摘Nitrogen-rich graphitized carbon microspheres(NGCs)with hierarchically porous were constructed by self-assembly.Under different heat treatment conditions,the structure,morphology and properties of NGCs were studied by using multiple characterization techniques.The results showed that the chemical microenvironments(e.g.surface chemistry,degree of graphitization and defective,etc.)and microstructures properties(e.g.morphology,specific surface area,particle size,etc.)could be delicately controlled via thermal carbonization processes.The degradation of ofloxacin(OFLX)by NGCs activated peroxymonosulfate(PMS)was studied systematically.It was found that the synergistic coupling effect between optimum N or O bonding species configuration ratio(graphitic N and C=O)and special microstructure was the main reason for the enhanced catalytic activity of NGC-800(calcination temperature at 800°C).Electron paramagnetic resonance(EPR)experiments and radical quenching experiments indicated that the hydroxyl(·OH),sulfate(SO4^·-)and singlet oxygen(^1O_(2))were contributors in the NGC-800/PMS systems.Further investigation of the durability of chemical structures and surface active sites revealed that undergo N bonding species configuration reconstruction and cannibalistic oxidation during PMS activation reaction.The used NGC-800 physicochemical properties could be recovered by heat treatment to achieve the ideal catalytic performance.The findings proposed a valuable insight for catalytic performance and controllable design of construction.
基金Supported by the National Key R&D Program of China(No.2017YFC1404402)the Science&Technology Basic Resources Investigation Program of China(No.2017FY100803)+1 种基金the Project of Global Change and Air-Sea Interaction(No.GASI-02-PAC-STMSspr)the National Natural Science Foundation of China(No.41306155)
文摘The effects of wavelength-specific visible light, white light, and ultraviolet-B (UV-B, 280- 315 nm) on selected behaviors, grazing rate, spawning rate, and hatching rate of the marine copepod Calanus sinicus collected from the Yellow Sea were studied. Calanus sinicus placed in a partitioned experimental system responded positively phototaxis to blue-cyan and yellow light but negatively to orange light and UVB. No obvious dodge activity was found among C. sinicus irradiated with <0.005 mW/cm^2 UV-B. Under 0.20, 0.30 and 0.50 mW/cm^2 UV-B radiation, the lethal half times of individuals were 30.47, 2.86, and 1.96 h, respectively. Grazing of C. sinicus was restrained at >0.10 mW/cm^2 UV-B, whereas yellow-red light stimulated grazing. Egg production rate was highest at a white-light intensity of 1.58 mW/cm^2, with an average rate of 10.04 eggs/(female·d). These results are consistent with the observed phenomenon that C. sinicus in the Yellow Sea mostly spawn near dawn. Our results indicate that light intensity and spectrum are important factors affecting the diel vertical migration of C. sinicus under natural conditions in the Yellow Sea.
文摘This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The middle surface of the plate is its symmetrical plane. The mathematical model of the plate is presented. The field of displacements is formulated using the proposed nonlinear hypothesis that generalizes the classical hypotheses. The equations of equilibrium are formulated based on the principle of stationary total potential energy. The proposed mathematical model of the displacements considers the shear effect. The numerical model of the plate is also formulated with a view to verify the analytical one. Numerical calculations are carried out for the chosen family of plates. The values of the critical load obtained by the analytical and numerical methods are compared. The effects of the material properties of the core and the change of the plate radius on the critical load intensity are presented.
基金the Universiti Teknikal Malaysia Melaka (UTeM)the Ministry of Education, Malaysia for being financial sponsorsUniversiti Kebangsaan Malaysia (UKM) for the financial support under research grants GUP-2012-040 and AP-2012-014
文摘The effects of Mg content on the microstructure and tensile properties of thixoformed A319 alloys were studied. The samples were thixoformed at 50% liquid content and some of the thixoformed samples were subjected to the T6 heat treatment. The samples were then examined by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis as well as tensile tests. The results showed that magnesium was able to refine the eutectic silicon in the samples. It was also observed that a compact Al9FeMg3Si5 phase was formed when the magnesium content was 1.0% and 1.5%. The results also revealed that as the magnesium content in the alloy increases, the tensile strengths of the thixoformed alloys also increase. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed A319 heat treated alloy were 298 MPa, 201 MPa and 4.5%, respectively, whereas the values of the thixoformed heat treated alloy with 1.5% Mg content were 325 MPa, 251 MPa and 1.4%, respectively. Thixoformed A319 alloy showed a dimple fracture behaviour, while thixoformed A319 alloys with 1.5% Mg showed a mixed mode fracture behaviour, where dimple and cleavage ruptures were seen on the fracture surface of the samples.
基金supported by the National Natural Science Foundation of China (No.11375136)。
文摘Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectroscopy.The active species in the degradation reaction of rGO-CuO composites under ultrasonic irradiation were detected by electron paramagnetic resonance.On the basis of comparative experiments,the photodegradation mechanisms of two typical dyes,Rhodamine B(Rh B)and methyl orange(MO),were proposed.The results demonstrated that the doped CuO could improve the degradation efficiency.The catalytic degradation efficiency of rGO-CuO(2:1)to rhodamine B(RhB)and methyl orange(MO)reached 90%and 87%respectively,which were 2.1 times and 4.4 times of the reduced graphene oxide.Through the first-principles and other theories,we give the reasons for the enhanced catalytic performance of rGO-CuO:combined with internal and external factors,rGO-CuO under ultrasound could produce more hole and active sites that could interact with the OH·in pollutant molecules to achieve degradation.The rGO-CuO nanocomposite has a simple preparation process and low price,and has a high efficiency of degrading water pollution products and no secondary pollution products.It has a low-cost and high-efficiency application prospect in water pollution industrial production and life.
基金Supported by the National Key Research and Development Program of China(Nos.2017YFC1404401,2017YFC1404402)the National Natural Science Foundation of China(No.41706189)。
文摘Information on the dietary composition and food preferences of the giant jellyfish Nemopilema nomurai is important for understanding the trophic drivers of jellyfish outbreaks and their ecological consequences.We used fatty acid(FA)and stable isotope(SI)biomarkers to analyze the diet of N.nomurai from the Yellow Sea in August 2016.N.nomurai was found at all sampling stations,with abundances ranging from 59 inds./km^(2) to 1651 inds./km^(2).There were no significant differences between large(>80 cm in diameter)and small(20–30 cm in diameter)medusae,either in FA compositions or in SI values,which suggests that large and small jellyfi sh have the same food composition and similar trophic levels.Compared to other zooplanktons,the relatively high levels of C20꞉4n-6 in total FAs(~12%)indicates that organic detritus contributes considerably to the food composition of the jellyfish.The mixed model Stable Isotope Analysis in R(SIAR)revealed that N.nomurai tended to prey on smaller organisms(<1000μm in diameter)which comprised about 70%of its diet.This means the N.nomurai blooms will put high feeding pressure on the small plankton.The similar SI values and FA composition indicates that krill may share the same food resources with N.nomurai,which suggests that the jellyfi sh blooms may affect krill populations as a result of food competition.
文摘The objectives of this study were to explore alternatives for using fruit waste and sugarcane bagasse as important sources for new products and potential applications in the food industry. Fast foods are part of modern life, as well as sources for producing biofuels based on biomass. The mineral content and compounds of nutritional interest, such as lipophilic substances, were determined in fruit waste (orange peels, passion fruit, bananas, grapes) and sugarcane bagasse. Significant differences were found in the samples tested, where minerals, such as potassium, nitrogen, zinc and iron, were found in fruit residues (bananas, oranges, passion fruit) and sugarcane bagasse. Banana residues were the most important source of minerals, followed by orange peels. Gas chromatography mass spectrography (GC-MS) analyses of the lipophilic fractions obtained from the plant residues revealed the presence of mostly saturated (palmitic, stearic) and unsaturated (oleic and linoleic) fatty acids, as well as other nutritionally valuable compounds, such as antioxidants (flavones in orange residues). The residues studied here can be used for future research to optimize pretreatment and hydrolysis of biomass for bioethanol production.
文摘Petroleum and Natural Gas still represent a considerable share in terms of energy consumption in the current global matrix, so that its exploration/exploitation is present in the market and driving activities in locations of specific complexities, as the ones along unconventional hydrocarbon resources from the Brazilian pre-salt. The daily cost of well drilling under harsh conditions can exceed US $1 million a day, turning any type of downtime or necessary maintenance during the activities to be very costly, moment in which processes optimization starts to be a key factor in costs reduction. Thus, new technologies and methods in terms of automating and optimizing the processes may be of great advantages, having its impact in total related project costs. In this context, the goal of this research is to allow a computation tool supporting achieving a more efficient drilling process, by means of drilling mechanics parameters choosiness aiming rate of penetration (ROP) maximization and mechanic specific energy (MSE) minimization. Conceptually, driven by the pre-operational drilling test curve trends, the proposed system allows it to be performed with less human influences and being updateable automatically, allowing more precision and time reduction by selecting optimum parameters. A Web Operating System (Web OS) was designed and implemented, running in online servers, granting accessibility to it with any device that has a browser and internet connection. It allows processing the drilling parameters supplied and feed into it, issuing outcomes with optimum values in a faster and precise way, allowing reducing operating time.
基金funded by UKRI EPSRC Grant EP/W020408/1 Project SPRITE+2:The Security,Privacy,Identity and Trust Engagement Network plus(phase 2)for this studyThe authors also have been funded by PhD project RS718 on Explainable AI through UKRI EPSRC Grant funded Doctoral Training Centre at Swansea University.
文摘With cloud computing,large chunks of data can be handled at a small cost.However,there are some reservations regarding the security and privacy of cloud data stored.For solving these issues and enhancing cloud computing security,this research provides a Three-Layered Security Access model(TLSA)aligned to an intrusion detection mechanism,access control mechanism,and data encryption system.The TLSA underlines the need for the protection of sensitive data.This proposed approach starts with Layer 1 data encryption using the Advanced Encryption Standard(AES).For data transfer and storage,this encryption guarantees the data’s authenticity and secrecy.Surprisingly,the solution employs the AES encryption algorithm to secure essential data before storing them in the Cloud to minimize unauthorized access.Role-based access control(RBAC)implements the second strategic level,which ensures specific personnel access certain data and resources.In RBAC,each user is allowed a specific role and Permission.This implies that permitted users can access some data stored in the Cloud.This layer assists in filtering granular access to data,reducing the risk that undesired data will be discovered during the process.Layer 3 deals with intrusion detection systems(IDS),which detect and quickly deal with malicious actions and intrusion attempts.The proposed TLSA security model of e-commerce includes conventional levels of security,such as encryption and access control,and encloses an insight intrusion detection system.This method offers integrated solutions for most typical security issues of cloud computing,including data secrecy,method of access,and threats.An extensive performance test was carried out to confirm the efficiency of the proposed three-tier security method.Comparisons have been made with state-of-art techniques,including DES,RSA,and DUAL-RSA,keeping into account Accuracy,QILV,F-Measure,Sensitivity,MSE,PSNR,SSIM,and computation time,encryption time,and decryption time.The proposed TLSA method provides an accuracy of 89.23%,F-Measure of 0.876,and SSIM of 0.8564 at a computation time of 5.7 s.A comparison with existing methods shows the better performance of the proposed method,thus confirming the enhanced ability to address security issues in cloud computing.
文摘This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.
文摘The use of the thermal power plant ashes including fly ash(FA) and bottom ash(BA) for producing unfired building bricks(UBB) using sodium hydroxide(NaOH) solution as an alkaline activator was investigated. A low applied forming pressure of 0.5 MPa and various NaOH concentrations of 5, 8, 10, and 12 M were used for the preparation of brick samples with different solution-to-binder(S/B) ratios of 0.35 and 0.40. The bricks were subjected to various test programs with reflecting the effect of both NaOH concentrations and S/B ratios on the brick’s properties. The compressive strength, unit weight, ultrasonic pulse velocity, and thermal conductivity of bricks increased with increasing NaOH concentration, whereas the contrary trend was found with increasing S/B ratio. Also, the water absorption of bricks was observed to reduce with increasing NaOH concentration and decreasing S/B ratio. As the results, the combined utilization of both low forming pressure and coal power plant ashes can produce the UBBs with low unit weight, low heat conductivity, and acceptable strength and water absorption rate as stipulated by TCVN 6477-2016. Furthermore, the outcomes of chemical analysis and microstructure observation also demonstrate that a high concentration of the Na OH promoted the geopolymerization process. Notably, the use of NaOH solution of either 10 M or above is recommended for the production of UBBs, which are classified as grade M5.0 or higher.
文摘Diagnosing data or object detection in medical images is one of the important parts of image segmentation especially those data which is less effective to identify inMRI such as low-grade tumors or cerebral spinal fluid(CSF)leaks in the brain.The aim of the study is to address the problems associated with detecting the low-grade tumor and CSF in brain is difficult in magnetic resonance imaging(MRI)images and another problem also relates to efficiency and less execution time for segmentation of medical images.For tumor and CSF segmentation using trained light field database(LFD)datasets of MRI images.This research proposed the new framework of the hybrid k-Nearest Neighbors(k-NN)model that is a combination of hybridization of Graph Cut and Support Vector Machine(GCSVM)and Hidden Markov Model of k-Mean Clustering Algorithm(HMMkC).There are four different methods are used in this research namely(1)SVM,(2)GrabCut segmentation,(3)HMM,and(4)k-mean clustering algorithm.In this framework,on the one hand,phase one is to perform the classification of SVM and Graph Cut algorithm to create the maximum margin distance.This research use GrabCut segmentation method which is the application of the graph cut algorithm and extract the data with the help of scaleinvariant features transform.On the other hand,in phase two,segment the low-grade tumors and CSF using a method adapted for HMkC and extract the information of tumor or CSF fluid by GCHMkC including iterative conditional maximizing mode(ICMM)with identifying the range of distant.Comparative evaluation is also performing by the comparison of existing techniques in this research.In conclusion,our proposed model gives better results than existing.This proposed model helps to common man and doctor that can identify their condition of brain easily.In future,this will model will use for other brain related diseases.
文摘The aim of the research work is to increase the yield of cotton fiber by improving the processing technology of germinated seeds, to improve the quality indicators of seeds and lint. In order to achieve this goal, a mesh surface device was created to sort the seeds into fractions. Sorting technology was developed on this device and operating modes were determined. In addition, the law of surface distribution of the fractions separated from the cotton stream moving along the surface of the net was determined, and based on the results of practical and theoretical research, a mode of sorting of cotton seeds was developed. As a result, differential equations of the law of oscillation of seeds on parallel bases, taking into account the angle of inclination for the movement of cotton seeds on the sorting surface, were constructed and programmed on a computer to construct the trajectory of seeds. On the basis of the laws of motion, the optimal value of the angle of inclination on the horizontal, which gives the state of sorting of seeds, as well as the values of the amplitude and frequency of vibrations, was determined.
文摘Annual energy consumption and annual Global Warming Potential (GWP) decreases with the improving of the energy performance of the facade, whereas the embodied energy and embodied GWP increases due to the extra material and products applied. This study analyses the relation between the embodied energy and the energy consumption of a house during the life span of the buildings, and the results represented separately in tables and figures. The study uses Life Cycle Assessment (LCA) framework as a tool to conduct a partial LCA, from cradle to site of the construction and energy consumption during usage phase of the buildings with three different wall types through 50 years usage phase. According to this study, laminated timber and aerated concrete are better choices than cast concrete for both types of buildings because of lower density and lower U value.
文摘The macadamia tree (macadamia integrifolia maiden & betche), originally from Australia, has smooth and rounded fruits, this walnut produces richly flavoured nuts, which are used "in natura" accompanying appetizers, in the manufacture of candies, being well accepted by the population. This paper analysed the production process of the agro industrial cooperative producers of macadamia nut (Coopmac), located in the town of Sao Mateus-ES/Brazil, and responsible for the production and marketing benefits for the states of Espirito Santo and Bahia. This analysis was performed in order to identify new opportunities for developing new products. The following steps were explored: analysis of the current procedure, ideas generation, analysis of potential ideas, development of a product concept and development of a prototype product. In cooperative, macadamia oil was only extracted. It was decided to develop a potential product from this oil. Initially, chemical analyzes were performed with this oil and opted for the production of soaps, liquid and bar. During this step, the methodology of design of experiments was used to develop the prototype. Sensory analysis, based on the LAM type hedonic scale, was used in the tests. The data were analyzed and could be distinguished the best formulation and the main effects for each assessed parameter. In this step, the statistical analysis software was used. From the value of the overall quality of the sample, greater acceptance for liquid soaps was obtained for a formulation with lower oil volume and higher volume of amphoteric. When concerning the sample bar soaps, the best formulation had the lower ratio of oil volume, the higher volume of amphoteric and lower mass of clay. The authors expect to contribute to generation of scientific and technological knowledge in order to effectively meet the practical needs of efforts directed to the production of macadamia nuts in the state of Espirito Santo.