This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational ...This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational efficiencies,and technological advancements.Linear generators,such as Induction,permanent magnet synchronous,and switched reluctance types,are highlighted for their direct conversion capability,eliminating the need for mechanical gearboxes.Rotary Induction generators,permanent magnet synchronous generators,and doubly-fed Induction generators are evaluated for their established engineering principles and integration with existing grid infrastructure.The paper discusses the historical development,environmental benefits,and ongoing advancements in wave energy technologies,emphasizing the increasing feasibility and scalability of wave energy as a renewable source.Through a comprehensive analysis,this review provides insights into the current state and future prospects of electrical generators in wave energy conversion,underscoring their potential to significantly reduce reliance on fossil fuels and mitigate environmental impacts.展开更多
Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,an...Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.展开更多
Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is...Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.展开更多
Microelectromechanical systems(MEMS)technology has gained significant attention over the past decade for measuring inertial angular velocity.However,due to inherent complexity,MEMS gyroscopes typically feature up to t...Microelectromechanical systems(MEMS)technology has gained significant attention over the past decade for measuring inertial angular velocity.However,due to inherent complexity,MEMS gyroscopes typically feature up to ten times more parameters than traditional sensors,making selection a challenging task even for experts.This study addresses this challenge,focusing on defensive guidance,navigation,and control(GNC)systems where precise and reliable angular velocity measurement is critical to overall performance.A comprehensive mathematical model is introduced to encapsulate all key MEMS parameters,accompanied by discussions on calibration and Allan variance interpretation.For six leading MEMS gyroscope applications,namely inertial navigation,integrated navigation,autopilot systems,rotating projectiles,homing guidance,and north finding,the most critical parameters are identified,distinguishing suitable and unsuitable sensor choices.Special emphasis is placed on inertial navigation systems,where practical rules of thumb for error evaluation are derived using six degrees of freedom motion equations.Rigorous simulations demonstrate the influence of various sensor parameters through real-world case studies,including static navigation,multi-rotor attitude estimation,gimbal stabilization,and north finding via a turntable.This work aims to be a beacon for practitioners across diverse fields,empowering them to make more informed design decisions.展开更多
Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods a...Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand,thus increasing energy costs and battery aging.This study proposes a smart charging station with an AI-powered Battery Management System(BMS),developed and simulated in MATLAB/Simulink,to increase optimality in energy flow,battery health,and impractical scheduling within the IoEV environment.The system operates through real-time communication,load scheduling based on priorities,and adaptive charging based on batterymathematically computed State of Charge(SOC),State of Health(SOH),and thermal state,with bidirectional power flow(V2G),thus allowing EVs’participation towards grid stabilization.Simulation results revealed that the proposed model can reduce peak grid load by 37.8%;charging efficiency is enhanced by 92.6%;battery temperature lessened by 4.4℃;SOH extended over 100 cycles by 6.5%,if compared against the conventional technique.By this way,charging time was decreased by 12.4% and energy costs dropped by more than 20%.These results showed that smart charging with intelligent BMS can boost greatly the operational efficiency and sustainability of the IoEV ecosystem.展开更多
Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)...Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.展开更多
In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved D...In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation.展开更多
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia...Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.展开更多
In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and ta...In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy.展开更多
This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,5...This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.展开更多
This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-a...This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-assisted junction termination extension(RA-JTE),multiple floating zone JTE(MFZ-JTE),and field limiting rings(FLR)were fabricated and irradiated with45 Me V protons at fluences ranging from 1×10^(12) to 1×10^(14) cm^(-2).Experimental results,supported by TCAD simulations,show that the RA-JTE structure maintained stable breakdown performance with less than 1%variation due to its effective electric field redistribution by multiple P+rings.In contrast,MFZ-JTE and FLR exhibit breakdown voltage shifts of 6.1%and 15.2%,respectively,under the highest fluence.These results demonstrate the superior radiation tolerance of the RA-JTE structure under TID conditions and provide practical design guidance for radiation-hardened Si C power devices in space and other highradiation environments.展开更多
Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learni...Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learning(DL)approaches often face several limitations,including inefficient feature extraction,class imbalance,suboptimal classification performance,and limited interpretability,which collectively hinder their deployment in clinical settings.To address these challenges,we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture.The preprocessing stage involves label encoding and feature scaling.To address the issue of class imbalance inherent in the personal key indicators of the heart disease dataset,the localized random affine shadowsampling technique is employed,which enhances minority class representation while minimizing overfitting.At the core of the framework lies the Deep Residual Network(DeepResNet),which employs hierarchical residual transformations to facilitate efficient feature extraction and capture complex,non-linear relationships in the data.Experimental results demonstrate that the proposed model significantly outperforms existing techniques,achieving improvements of 3.26%in accuracy,3.16%in area under the receiver operating characteristics,1.09%in recall,and 1.07%in F1-score.Furthermore,robustness is validated using 10-fold crossvalidation,confirming the model’s generalizability across diverse data distributions.Moreover,model interpretability is ensured through the integration of Shapley additive explanations and local interpretable model-agnostic explanations,offering valuable insights into the contribution of individual features to model predictions.Overall,the proposed DL framework presents a robust,interpretable,and clinically applicable solution for heart disease prediction.展开更多
As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.Ho...As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.However,the true effectiveness of these advancements lies in the seamless integration of alternative semiconductors tailored for next-generation transistors.In this review,we highlight key advances that enhance both scalability and switching performance by leveraging emerging semiconductor materials.Among the most promising candidates are 2D van der Waals semiconductors,Mott insulators,and amorphous oxide semiconductors,which offer not only unique electrical properties but also low-power operation and high carrier mobility.Additionally,we explore the synergistic interactions between these novel semiconductors and advanced gate dielectrics,including high-K materials,ferroelectrics,and atomically thin hexagonal boron nitride layers.Beyond introducing these novel material configurations,we address critical challenges such as leakage current and long-term device reliability,which become increasingly crucial as transistors scale down to atomic dimensions.Through concrete examples showcasing the potential of these materials in transistors,we provide key insights into overcoming fundamental obstacles—such as device reliability,scaling down limitations,and extended applications in artificial intelligence—ultimately paving the way for the development of future transistor technologies.展开更多
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc...Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments.展开更多
The effect of sintering temperature on microstructure, electrical properties, and pulse aging behavior of (V2O5-Mn3O4-Er2O3)-doped zinc oxide varistor ceramics was systematically studied. When the sintering temperat...The effect of sintering temperature on microstructure, electrical properties, and pulse aging behavior of (V2O5-Mn3O4-Er2O3)-doped zinc oxide varistor ceramics was systematically studied. When the sintering temperature increased, the average grain size increased from 6.1 to 8.7μm and the sintered density decreased from 5.52 to 5.43 g/cm3. The breakdown field decreased from 3856 to 922 V/cm with an increase in the sintering temperature up to 900 °C, whereas a further increase to 2352 V/cm at 925 °C. The nonlinear coefficient increased pronouncedly from 4.6 to 30.0 with an increase in the sintering temperature. The varistor ceramics sintered at 850 °C exhibited the best clamping characteristics, with the clamp voltage ratio of the range of 2.22-2.88 for pulse current of 1-25 A. The varistor ceramics sintered at 925 °C exhibited the strongest stability, with %ΔE1 mA/cm2=-8.8% after applying the multi-pulse current of 25 A.展开更多
The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were...The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites.展开更多
In electrical circuit analysis, it is often necessary to find the set of all direct current (d.c.) operating points (either voltages or currents) of nonlinear circuits. In general, these nonlinear equations are of...In electrical circuit analysis, it is often necessary to find the set of all direct current (d.c.) operating points (either voltages or currents) of nonlinear circuits. In general, these nonlinear equations are often represented as polynomial systems. In this paper, we address the problem of finding the solutions of nonlinear electrical circuits, which are modeled as systems of n polynomial equations contained in an n-dimensional box. Branch and Bound algorithms based on interval methods can give guaranteed enclosures for the solution. However, because of repeated evaluations of the function values, these methods tend to become slower. Branch and Bound algorithm based on Bernstein coefficients can be used to solve the systems of polynomial equations. This avoids the repeated evaluation of function values, but maintains more or less the same number of iterations as that of interval branch and bound methods. We propose an algorithm for obtaining the solution of polynomial systems, which includes a pruning step using Bernstein Krawczyk operator and a Bernstein Coefficient Contraction algorithm to obtain Bernstein coefficients of the new domain. We solved three circuit analysis problems using our proposed algorithm. We compared the performance of our proposed algorithm with INTLAB based solver and found that our proposed algorithm is more efficient and fast.展开更多
Electrical explosion of a wire(EEW)has been investigated for more than ten years at Tsinghua University,and the main results are reviewed in this paper.Based onEEWin vacuum,an X-pinch was used as an x-ray source for p...Electrical explosion of a wire(EEW)has been investigated for more than ten years at Tsinghua University,and the main results are reviewed in this paper.Based onEEWin vacuum,an X-pinch was used as an x-ray source for phase-contrast imaging of small insects such as mosquitoes and ants in which it was possible to observe clearly their detailed internal structures,which can never be seen with conventional x-ray radiography.Electrical explosion of a wire array(EEWA)in vacuum is the initial stage in the formation of a wire-array Z-pinch.The evolution ofEEWAwas observed with x-ray backlighting using two X-pinches as x-ray sources.It was found that each wire in an EEWA exhibits a core–corona structure instead of forming a fully vaporized metallic vapor.This structure is detrimental to the plasma implosion of a Z-pinch.By inserting an insulator as a flashover switch into the cathode,formation of a core–corona structure was suppressed and core-freeEEWAwas realized.EEWin gases was used for nanopowder production.Three parameters(vaporization rate,gas pressure,and energy deposited in the exploding plasma)were found to influence the nanoparticle size.EEWin water was used for shock-wave generation.The shock wave generated by melting could be recorded with a piezoelectric gauge only in underheat EEW.ForEEW with a given stored energy but different energy-storage capacitor banks,the small capacitor bank produced a rapidly rising current that deposited more energy into the wire and generated a stronger shock wave.展开更多
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off...The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.展开更多
Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract in...Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract intensive studies of their advantages due to low-level ion migration and decent stability.However,there is still a lack of methods to precisely construct heterostructures and a fundamental understanding of their structure-dependent optoelectronic properties.Herein,a gas-phase method was developed to grow 2D perovskites directly on 3D perovskites with nanoscale accuracy.In addition,the larger steric hindrance of organic layers of 2D perovskites was proved to enable slower ion migration,which resulted in reduced trap states and better stability.Based on MAPbBr_(3)single crystals with the(PA)_(2)PbBr_(4)capping layer,the X-ray detector achieved a sensitivity of 22,245μC Gy_(air)^(−1)cm^(−2),a response speed of 240μs,and a dark current drift of 1.17.10^(–4)nA cm^(−1)s^(−1)V^(−1),which were among the highest reported for state-of-the-art perovskite-based X-ray detectors.This study presents a precise synthesis method to construct perovskite-based heterostructures.It also brings an in-depth understanding of the relationship between lattice structures and properties,which are beneficial for advancing high-performance and cost-effective X-ray detectors.展开更多
文摘This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational efficiencies,and technological advancements.Linear generators,such as Induction,permanent magnet synchronous,and switched reluctance types,are highlighted for their direct conversion capability,eliminating the need for mechanical gearboxes.Rotary Induction generators,permanent magnet synchronous generators,and doubly-fed Induction generators are evaluated for their established engineering principles and integration with existing grid infrastructure.The paper discusses the historical development,environmental benefits,and ongoing advancements in wave energy technologies,emphasizing the increasing feasibility and scalability of wave energy as a renewable source.Through a comprehensive analysis,this review provides insights into the current state and future prospects of electrical generators in wave energy conversion,underscoring their potential to significantly reduce reliance on fossil fuels and mitigate environmental impacts.
基金supported by National Natural Science Foundation of China(Grant Nos:62122004 and 62274082)Beijing Natural Science Foundation(Grant No.Z210006)+5 种基金Hong Kong Research Grant Council(Grant Nos.27206321,17205922,17212923,C1009-22G and T45-701/22-R)Shenzhen Science and Technology Innovation Commission(SGDX20220530111405040,JCYJ20220530115411025 and JCYJ20210324120409025)Research on mechanism of source/drain ohmic contact and the related Ga N p-FET(Grant No:2023A1515030034)Research on high-reliable Ga N power device and the related industrial power system(Grant No:HZQB-KCZYZ-2021052)supported by ACCESS-AI Chip Center for Emerging Smart Systems,sponsored by Innovation and Technology Fund(ITF),Hong Kong SARthe assistance of SUSTech Core Research Facilities。
文摘Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.
基金National Key Research and Development Program of China(2021YFA1501302)the National Natural Science Foundation of China(22121004,22122808)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations and the Program of Introducing Talents of Discipline to Universities(BP0618007)for financial supportsupported by the XPLORER PRIZE.
文摘Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.
文摘Microelectromechanical systems(MEMS)technology has gained significant attention over the past decade for measuring inertial angular velocity.However,due to inherent complexity,MEMS gyroscopes typically feature up to ten times more parameters than traditional sensors,making selection a challenging task even for experts.This study addresses this challenge,focusing on defensive guidance,navigation,and control(GNC)systems where precise and reliable angular velocity measurement is critical to overall performance.A comprehensive mathematical model is introduced to encapsulate all key MEMS parameters,accompanied by discussions on calibration and Allan variance interpretation.For six leading MEMS gyroscope applications,namely inertial navigation,integrated navigation,autopilot systems,rotating projectiles,homing guidance,and north finding,the most critical parameters are identified,distinguishing suitable and unsuitable sensor choices.Special emphasis is placed on inertial navigation systems,where practical rules of thumb for error evaluation are derived using six degrees of freedom motion equations.Rigorous simulations demonstrate the influence of various sensor parameters through real-world case studies,including static navigation,multi-rotor attitude estimation,gimbal stabilization,and north finding via a turntable.This work aims to be a beacon for practitioners across diverse fields,empowering them to make more informed design decisions.
文摘Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand,thus increasing energy costs and battery aging.This study proposes a smart charging station with an AI-powered Battery Management System(BMS),developed and simulated in MATLAB/Simulink,to increase optimality in energy flow,battery health,and impractical scheduling within the IoEV environment.The system operates through real-time communication,load scheduling based on priorities,and adaptive charging based on batterymathematically computed State of Charge(SOC),State of Health(SOH),and thermal state,with bidirectional power flow(V2G),thus allowing EVs’participation towards grid stabilization.Simulation results revealed that the proposed model can reduce peak grid load by 37.8%;charging efficiency is enhanced by 92.6%;battery temperature lessened by 4.4℃;SOH extended over 100 cycles by 6.5%,if compared against the conventional technique.By this way,charging time was decreased by 12.4% and energy costs dropped by more than 20%.These results showed that smart charging with intelligent BMS can boost greatly the operational efficiency and sustainability of the IoEV ecosystem.
文摘Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.
基金funded by the Institute of Smart Energy,Huaiyin Institute of Technology,under Grant No.HIT-ISE-2024-07.
文摘In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation.
基金the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,for funding this research work through the project number“NBU-FFR-2025-3623-11”.
文摘Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.
文摘In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy.
文摘This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.
基金supported by the IITP(Institute for Information&Communications Technology Planning&Evaluation)under the ITRC(Information Technology Research Center)support program(IITP-2025-RS-2024-00438288)grant funded by the Korea government(MSIT)+1 种基金National Research Council of Science&Technology(NST)grant by the MSIT(Aerospace Semiconductor Strategy Research Project No.GTL25051-000)supported by the IC Design Education Center(IDEC),Korea。
文摘This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-assisted junction termination extension(RA-JTE),multiple floating zone JTE(MFZ-JTE),and field limiting rings(FLR)were fabricated and irradiated with45 Me V protons at fluences ranging from 1×10^(12) to 1×10^(14) cm^(-2).Experimental results,supported by TCAD simulations,show that the RA-JTE structure maintained stable breakdown performance with less than 1%variation due to its effective electric field redistribution by multiple P+rings.In contrast,MFZ-JTE and FLR exhibit breakdown voltage shifts of 6.1%and 15.2%,respectively,under the highest fluence.These results demonstrate the superior radiation tolerance of the RA-JTE structure under TID conditions and provide practical design guidance for radiation-hardened Si C power devices in space and other highradiation environments.
基金funded by Ongoing Research Funding Program for Project number(ORF-2025-648),King Saud University,Riyadh,Saudi Arabia.
文摘Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learning(DL)approaches often face several limitations,including inefficient feature extraction,class imbalance,suboptimal classification performance,and limited interpretability,which collectively hinder their deployment in clinical settings.To address these challenges,we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture.The preprocessing stage involves label encoding and feature scaling.To address the issue of class imbalance inherent in the personal key indicators of the heart disease dataset,the localized random affine shadowsampling technique is employed,which enhances minority class representation while minimizing overfitting.At the core of the framework lies the Deep Residual Network(DeepResNet),which employs hierarchical residual transformations to facilitate efficient feature extraction and capture complex,non-linear relationships in the data.Experimental results demonstrate that the proposed model significantly outperforms existing techniques,achieving improvements of 3.26%in accuracy,3.16%in area under the receiver operating characteristics,1.09%in recall,and 1.07%in F1-score.Furthermore,robustness is validated using 10-fold crossvalidation,confirming the model’s generalizability across diverse data distributions.Moreover,model interpretability is ensured through the integration of Shapley additive explanations and local interpretable model-agnostic explanations,offering valuable insights into the contribution of individual features to model predictions.Overall,the proposed DL framework presents a robust,interpretable,and clinically applicable solution for heart disease prediction.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT),South Korea(RS-2024-00421181)financially supported in part by National R&D Program(2021M3H4A3A02086430)through NRF(National Research Foundation of Korea)funded by Ministry of Science and ICT+2 种基金the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.GTL25021-210)The Inter-University Semiconductor Research Center,Institute of Engineering Research,and Soft Foundry Institute at Seoul National University provided research facilities for this workhe grant by the National Research Foundation of Korea(NSF)supported by the Korea government(MIST)(RS-2025-16903034)。
文摘As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.However,the true effectiveness of these advancements lies in the seamless integration of alternative semiconductors tailored for next-generation transistors.In this review,we highlight key advances that enhance both scalability and switching performance by leveraging emerging semiconductor materials.Among the most promising candidates are 2D van der Waals semiconductors,Mott insulators,and amorphous oxide semiconductors,which offer not only unique electrical properties but also low-power operation and high carrier mobility.Additionally,we explore the synergistic interactions between these novel semiconductors and advanced gate dielectrics,including high-K materials,ferroelectrics,and atomically thin hexagonal boron nitride layers.Beyond introducing these novel material configurations,we address critical challenges such as leakage current and long-term device reliability,which become increasingly crucial as transistors scale down to atomic dimensions.Through concrete examples showcasing the potential of these materials in transistors,we provide key insights into overcoming fundamental obstacles—such as device reliability,scaling down limitations,and extended applications in artificial intelligence—ultimately paving the way for the development of future transistor technologies.
基金funded by the Directorate of Research and Community Service,Directorate General of Research and Development,Ministry of Higher Education,Science and Technologyin accordance with the Implementation Contract for the Operational Assistance Program for State Universities,Research Program Number:109/C3/DT.05.00/PL/2025.
文摘Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments.
文摘The effect of sintering temperature on microstructure, electrical properties, and pulse aging behavior of (V2O5-Mn3O4-Er2O3)-doped zinc oxide varistor ceramics was systematically studied. When the sintering temperature increased, the average grain size increased from 6.1 to 8.7μm and the sintered density decreased from 5.52 to 5.43 g/cm3. The breakdown field decreased from 3856 to 922 V/cm with an increase in the sintering temperature up to 900 °C, whereas a further increase to 2352 V/cm at 925 °C. The nonlinear coefficient increased pronouncedly from 4.6 to 30.0 with an increase in the sintering temperature. The varistor ceramics sintered at 850 °C exhibited the best clamping characteristics, with the clamp voltage ratio of the range of 2.22-2.88 for pulse current of 1-25 A. The varistor ceramics sintered at 925 °C exhibited the strongest stability, with %ΔE1 mA/cm2=-8.8% after applying the multi-pulse current of 25 A.
基金Project(2010-0008-277) supported by Program of Establishment of an Infrastructure for Public Usepartly by NCRC (National Core Research Center) through the National Research Foundation of Korea funded by the Ministry of Education
文摘The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites.
文摘In electrical circuit analysis, it is often necessary to find the set of all direct current (d.c.) operating points (either voltages or currents) of nonlinear circuits. In general, these nonlinear equations are often represented as polynomial systems. In this paper, we address the problem of finding the solutions of nonlinear electrical circuits, which are modeled as systems of n polynomial equations contained in an n-dimensional box. Branch and Bound algorithms based on interval methods can give guaranteed enclosures for the solution. However, because of repeated evaluations of the function values, these methods tend to become slower. Branch and Bound algorithm based on Bernstein coefficients can be used to solve the systems of polynomial equations. This avoids the repeated evaluation of function values, but maintains more or less the same number of iterations as that of interval branch and bound methods. We propose an algorithm for obtaining the solution of polynomial systems, which includes a pruning step using Bernstein Krawczyk operator and a Bernstein Coefficient Contraction algorithm to obtain Bernstein coefficients of the new domain. We solved three circuit analysis problems using our proposed algorithm. We compared the performance of our proposed algorithm with INTLAB based solver and found that our proposed algorithm is more efficient and fast.
文摘Electrical explosion of a wire(EEW)has been investigated for more than ten years at Tsinghua University,and the main results are reviewed in this paper.Based onEEWin vacuum,an X-pinch was used as an x-ray source for phase-contrast imaging of small insects such as mosquitoes and ants in which it was possible to observe clearly their detailed internal structures,which can never be seen with conventional x-ray radiography.Electrical explosion of a wire array(EEWA)in vacuum is the initial stage in the formation of a wire-array Z-pinch.The evolution ofEEWAwas observed with x-ray backlighting using two X-pinches as x-ray sources.It was found that each wire in an EEWA exhibits a core–corona structure instead of forming a fully vaporized metallic vapor.This structure is detrimental to the plasma implosion of a Z-pinch.By inserting an insulator as a flashover switch into the cathode,formation of a core–corona structure was suppressed and core-freeEEWAwas realized.EEWin gases was used for nanopowder production.Three parameters(vaporization rate,gas pressure,and energy deposited in the exploding plasma)were found to influence the nanoparticle size.EEWin water was used for shock-wave generation.The shock wave generated by melting could be recorded with a piezoelectric gauge only in underheat EEW.ForEEW with a given stored energy but different energy-storage capacitor banks,the small capacitor bank produced a rapidly rising current that deposited more energy into the wire and generated a stronger shock wave.
基金supported by the IITP(Institute of Information & Communications Technology Planning & Evaluation)-ITRC(Information Technology Research Center) grant funded by the Korea government(Ministry of Science and ICT) (IITP-2025-RS-2024-00437191, and RS-2025-02303505)partly supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education. (No. 2022R1A6C101A774)the Deanship of Research and Graduate Studies at King Khalid University, Saudi Arabia, through Large Research Project under grant number RGP-2/527/46
文摘The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.
基金support from National Key Research and Development Program of China(2024YFE0217100)the National Natural Science Foundation of China(21905006,22261160370,and 62105075)+7 种基金the Guangdong Provincial Science and Technology Plan(2021A0505110003)the Natural Science Foundation of Hunan Province,China(2023JJ50132)Guangxi Department of Science and Technology(2020GXNSFBA159049 and AD19110030)the Shenzhen Science and Technology Program(SGDX20230116093205009,JCYJ20220818100211025 and 2022378670)the Natural Science Foundation of Top Talent of SZTU(GDRC202343)financial support of Innovation and Technology Fund(#GHP/245/22SZ)The University Grant Council of the University of Hong Kong(grant No.2302101786)General Research Fund(grant Nos.17200823 and 17310624)from the Research Grants Council.
文摘Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract intensive studies of their advantages due to low-level ion migration and decent stability.However,there is still a lack of methods to precisely construct heterostructures and a fundamental understanding of their structure-dependent optoelectronic properties.Herein,a gas-phase method was developed to grow 2D perovskites directly on 3D perovskites with nanoscale accuracy.In addition,the larger steric hindrance of organic layers of 2D perovskites was proved to enable slower ion migration,which resulted in reduced trap states and better stability.Based on MAPbBr_(3)single crystals with the(PA)_(2)PbBr_(4)capping layer,the X-ray detector achieved a sensitivity of 22,245μC Gy_(air)^(−1)cm^(−2),a response speed of 240μs,and a dark current drift of 1.17.10^(–4)nA cm^(−1)s^(−1)V^(−1),which were among the highest reported for state-of-the-art perovskite-based X-ray detectors.This study presents a precise synthesis method to construct perovskite-based heterostructures.It also brings an in-depth understanding of the relationship between lattice structures and properties,which are beneficial for advancing high-performance and cost-effective X-ray detectors.