This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational ...This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational efficiencies,and technological advancements.Linear generators,such as Induction,permanent magnet synchronous,and switched reluctance types,are highlighted for their direct conversion capability,eliminating the need for mechanical gearboxes.Rotary Induction generators,permanent magnet synchronous generators,and doubly-fed Induction generators are evaluated for their established engineering principles and integration with existing grid infrastructure.The paper discusses the historical development,environmental benefits,and ongoing advancements in wave energy technologies,emphasizing the increasing feasibility and scalability of wave energy as a renewable source.Through a comprehensive analysis,this review provides insights into the current state and future prospects of electrical generators in wave energy conversion,underscoring their potential to significantly reduce reliance on fossil fuels and mitigate environmental impacts.展开更多
Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,an...Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.展开更多
Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is...Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.展开更多
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro...Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.展开更多
The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenit...The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenitor cells,and nerve cells do not replicate.Hence,neurodegeneration implicates irreversible damage to the central nervous system,as observed in several neurodegenerative diseases(Marchesi et al.,2021).展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
This study aims to evaluate the safety status of electrical installations in residential and commercial buildings within the Suame ECG strategic business unit, Ghana, focusing on compliance with international and Ghan...This study aims to evaluate the safety status of electrical installations in residential and commercial buildings within the Suame ECG strategic business unit, Ghana, focusing on compliance with international and Ghanaian wiring standards. The research assesses key factors influencing safety, including the certification of electricians, the quality of cable brands used, proper cable sizing, adherence to wiring color codes, the awareness and use of Residual Current Circuit Breakers (RCCBs), and the protection of earth electrodes. A descriptive research design was utilized, involving extensive field surveys and electrical installation audits. Data were collected using standardized tools and analyzed with SPSS software to evaluate the professional competencies of artisans and their adherence to safety standards. The findings indicate significant safety risks, with 69.7% of electricians lacking proper certification, leading to the widespread use of non-approved cable brands, improper cable sizing, and deviations from wiring color codes. Additionally, deficiencies were found in the awareness and use of RCCBs and the protection of earth electrodes. The study concludes with recommendations to enhance electrical safety, including mandatory certification for electricians, public awareness campaigns, regular inspections, and ongoing training and development programs. These measures are crucial for improving the overall safety and quality of electrical installations in the Suame area, Ghana.展开更多
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti...Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.展开更多
Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground commu...This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.展开更多
Wireless sensor network(WSN)technologies have advanced significantly in recent years.With in WSNs,machine learning algorithms are crucial in selecting cluster heads(CHs)based on various quality of service(QoS)metrics....Wireless sensor network(WSN)technologies have advanced significantly in recent years.With in WSNs,machine learning algorithms are crucial in selecting cluster heads(CHs)based on various quality of service(QoS)metrics.This paper proposes a new clustering routing protocol employing the Traveling Salesman Problem(TSP)to locate the optimal path traversed by the Mobile Data Collector(MDC),in terms of energy and QoS efficiency.To bemore specific,to minimize energy consumption in the CH election stage,we have developed the M-T protocol using the K-Means and the grid clustering algorithms.In addition,to improve the transmission phase of the Low Energy Adaptive Clustering-Grid-KMeans(LEACH-G-K)protocol,the MDC is employed as an intermediary between the CH and the sink to improve the wireless sensor network(WSN)QoS.The results of the experiment demonstrate that the M-T protocol enhances various Low Energy Adaptive Clustering protocol(LEACH)improvements such as the LEACH-G-K,LEACH-C,Threshold sensitive Energy Efficient Sensor Networks(TEEN),MDC maximum residual energy leach protocol.展开更多
This paper investigates the resource allocation for rate-splitting multiple access(RSMA)enabled multibeam satellite communication systems.Specifically,we minimize the total unmet user rate,which denotes the difference...This paper investigates the resource allocation for rate-splitting multiple access(RSMA)enabled multibeam satellite communication systems.Specifically,we minimize the total unmet user rate,which denotes the difference between the users’rate requirement and the practical achievable rate,as well as the total transmit power of the satellite by optimizing the precoding,power allocation,and rate allocation,under the per-feed power and rate constraints.To solve the non-convex optimization problem,a twostage scheme is proposed.In particular,in the first stage,we present a precoding scheme by maximizing the signal-to-leakage-plus-noise ratio of each beam to eliminate the inter-beam interference.In the second stage,we introduce auxiliary variables to obtain an upper bound on the objective function under the given precoding matrix and transform the rate constraints of the original problem into second-order cones(SOC)and linear matrix inequations(LMI).Then,the successive convex approximation(SCA)technique is used to obtain suboptimal power and rate allocation solutions.Moreover,the initial feasible solution for power allocation is provided by using the standard interior point method.Finally,numerical results verify the superiority of our proposed solution compared to the benchmark methods in terms of objective function values.展开更多
Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford...Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.展开更多
Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injec...Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity.To overcome these obstacles,researchers have created several network IDS models,such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques.This study provides an updated learning strategy for artificial neural network(ANN)to address data categorization problems caused by unbalanced data.Compared to traditional approaches,the augmented ANN’s 92%accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity,brought about by the addition of a random weight and standard scaler.Considering the ever-evolving nature of cybersecurity threats,this study introduces a revolutionary intrusion detection method.展开更多
Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privac...Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privacy-preserving Web3 scenarios.However,DFL faces incentive and security challenges in the decentralized framework.To address these issues,this paper presents a Hierarchical Blockchain-enabled DFL(HBDFL)system,which provides a generic solution framework for the DFL-related applications.The proposed system consists of four major components,including a model contribution-based reward mechanism,a Proof of Elapsed Time and Accuracy(PoETA)consensus algorithm,a Distributed Reputation-based Verification Mechanism(DRTM)and an Accuracy-Dependent Throughput Management(ADTM)mechanism.The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets,while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput.The DRTM improves the system efficiency in consensus,and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy.The performance of the proposed HBDFL system is evaluated by numerical simulations,with the results showing that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.展开更多
Wide-bandgap(WBG)perovskite solar cells(PSCs)have gained remarkable interest owing to their latent applications in tandem solar cells(TSCs).Among them,four-terminal(4T)all-perovskite TSCs have received extensive atten...Wide-bandgap(WBG)perovskite solar cells(PSCs)have gained remarkable interest owing to their latent applications in tandem solar cells(TSCs).Among them,four-terminal(4T)all-perovskite TSCs have received extensive attention as its do without need to consider current matching,surface roughness,and fabrication processes.However,low open-circuit voltage(VOC)and efficiency of WBG PSCs obstacles their applications in 4T allperovskite TSCs.Hence,this review firstly discussed the optimizing strategy in perovskite materials layer and properties.Specifically,we assessed the effect of composition,additive and interface engineering on the efficiency and VOC of WBG PSCs.Secondly,the demonstrated applications of different passivation layers designing for intensifying the efficiency of WBG PSCs and 4T all-perovskite TSCs is discussed.Finally,we put forward three specific approaches for future research,in our view,which would offer appropriate guidance for the exploitation of highly efficient and stable 4T all-perovskite TSCs.展开更多
The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a ...The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a novel carrier-interleaved pulse width modulation(CIPWM)method that satisfies the volt-sec balance principle is proposed with an advanced carrier distribution rule.By adopting the proposed CIPWM method,the redundant switching states of 4L-NNPC inverters can be evenly distributed into the output PWM waveform in each carrier period,and natural flying-capacitor voltage balance can be achieved.Furthermore,an active balancing strategy is also proposed to eliminate the voltage unbalance caused by nonideal factors,which is realized by simply adjusting the duty cycle and with no need to adjust the redundant switching states for 4L-NNPC inverters.The simulation and experimental results verify the effectiveness of the proposed CIPWM method and the flying-capacitor voltage balancing strategy.展开更多
Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from...Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.展开更多
文摘This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational efficiencies,and technological advancements.Linear generators,such as Induction,permanent magnet synchronous,and switched reluctance types,are highlighted for their direct conversion capability,eliminating the need for mechanical gearboxes.Rotary Induction generators,permanent magnet synchronous generators,and doubly-fed Induction generators are evaluated for their established engineering principles and integration with existing grid infrastructure.The paper discusses the historical development,environmental benefits,and ongoing advancements in wave energy technologies,emphasizing the increasing feasibility and scalability of wave energy as a renewable source.Through a comprehensive analysis,this review provides insights into the current state and future prospects of electrical generators in wave energy conversion,underscoring their potential to significantly reduce reliance on fossil fuels and mitigate environmental impacts.
基金supported by National Natural Science Foundation of China(Grant Nos:62122004 and 62274082)Beijing Natural Science Foundation(Grant No.Z210006)+5 种基金Hong Kong Research Grant Council(Grant Nos.27206321,17205922,17212923,C1009-22G and T45-701/22-R)Shenzhen Science and Technology Innovation Commission(SGDX20220530111405040,JCYJ20220530115411025 and JCYJ20210324120409025)Research on mechanism of source/drain ohmic contact and the related Ga N p-FET(Grant No:2023A1515030034)Research on high-reliable Ga N power device and the related industrial power system(Grant No:HZQB-KCZYZ-2021052)supported by ACCESS-AI Chip Center for Emerging Smart Systems,sponsored by Innovation and Technology Fund(ITF),Hong Kong SARthe assistance of SUSTech Core Research Facilities。
文摘Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.
基金National Key Research and Development Program of China(2021YFA1501302)the National Natural Science Foundation of China(22121004,22122808)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations and the Program of Introducing Talents of Discipline to Universities(BP0618007)for financial supportsupported by the XPLORER PRIZE.
文摘Noise is inevitable in electrical capacitance tomography(ECT)measurements.This paper describes the influence of noise on ECT performance for measuring gas-solids fluidized bed characteristics.The noise distribution is approximated by the Gaussian distribution and added to experimental capacitance data with various intensities.The equivalent signal strength(Ф)that equals the signal-to-noise ratio of packed beds is used to evaluate noise levels.Results show that the Pearson correlation coefficient,which indicates the similarity of solids fraction distributions over pixels,increases with Ф,and reconstructed images are more deteriorated at lower Ф.Nevertheless,relative errors for average solids fraction and bubble size in each frame are less sensitive to noise,attributed to noise compromise caused by the process of pixel values.These findings provide useful guidance for assessing the accuracy of ECT measurements of multiphase flows.
基金supported substantially by the Southwest Jiaotong University for Material and Financial Support。
文摘Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.
基金supported by grants from City University of Hong Kong,China (Project No.SRG-Fd7005632,SRG-Fd 7005854SIRG 7020058)(to LLHC)。
文摘The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenitor cells,and nerve cells do not replicate.Hence,neurodegeneration implicates irreversible damage to the central nervous system,as observed in several neurodegenerative diseases(Marchesi et al.,2021).
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
文摘This study aims to evaluate the safety status of electrical installations in residential and commercial buildings within the Suame ECG strategic business unit, Ghana, focusing on compliance with international and Ghanaian wiring standards. The research assesses key factors influencing safety, including the certification of electricians, the quality of cable brands used, proper cable sizing, adherence to wiring color codes, the awareness and use of Residual Current Circuit Breakers (RCCBs), and the protection of earth electrodes. A descriptive research design was utilized, involving extensive field surveys and electrical installation audits. Data were collected using standardized tools and analyzed with SPSS software to evaluate the professional competencies of artisans and their adherence to safety standards. The findings indicate significant safety risks, with 69.7% of electricians lacking proper certification, leading to the widespread use of non-approved cable brands, improper cable sizing, and deviations from wiring color codes. Additionally, deficiencies were found in the awareness and use of RCCBs and the protection of earth electrodes. The study concludes with recommendations to enhance electrical safety, including mandatory certification for electricians, public awareness campaigns, regular inspections, and ongoing training and development programs. These measures are crucial for improving the overall safety and quality of electrical installations in the Suame area, Ghana.
文摘Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
基金supported by the National Natural Science Foundation of China(No.62371080 and 62031006)the National Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0597)the Venture&Innovation Support Program for Chongqing Overseas Returnees,China(No.cx2022063)。
文摘This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication.
基金supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2023S1A5C2A07096111).
文摘Wireless sensor network(WSN)technologies have advanced significantly in recent years.With in WSNs,machine learning algorithms are crucial in selecting cluster heads(CHs)based on various quality of service(QoS)metrics.This paper proposes a new clustering routing protocol employing the Traveling Salesman Problem(TSP)to locate the optimal path traversed by the Mobile Data Collector(MDC),in terms of energy and QoS efficiency.To bemore specific,to minimize energy consumption in the CH election stage,we have developed the M-T protocol using the K-Means and the grid clustering algorithms.In addition,to improve the transmission phase of the Low Energy Adaptive Clustering-Grid-KMeans(LEACH-G-K)protocol,the MDC is employed as an intermediary between the CH and the sink to improve the wireless sensor network(WSN)QoS.The results of the experiment demonstrate that the M-T protocol enhances various Low Energy Adaptive Clustering protocol(LEACH)improvements such as the LEACH-G-K,LEACH-C,Threshold sensitive Energy Efficient Sensor Networks(TEEN),MDC maximum residual energy leach protocol.
文摘This paper investigates the resource allocation for rate-splitting multiple access(RSMA)enabled multibeam satellite communication systems.Specifically,we minimize the total unmet user rate,which denotes the difference between the users’rate requirement and the practical achievable rate,as well as the total transmit power of the satellite by optimizing the precoding,power allocation,and rate allocation,under the per-feed power and rate constraints.To solve the non-convex optimization problem,a twostage scheme is proposed.In particular,in the first stage,we present a precoding scheme by maximizing the signal-to-leakage-plus-noise ratio of each beam to eliminate the inter-beam interference.In the second stage,we introduce auxiliary variables to obtain an upper bound on the objective function under the given precoding matrix and transform the rate constraints of the original problem into second-order cones(SOC)and linear matrix inequations(LMI).Then,the successive convex approximation(SCA)technique is used to obtain suboptimal power and rate allocation solutions.Moreover,the initial feasible solution for power allocation is provided by using the standard interior point method.Finally,numerical results verify the superiority of our proposed solution compared to the benchmark methods in terms of objective function values.
基金supported in part by the Universitat Politècnica de València under grant PAID-10-21supported through AMRITA Seed Grant(Proposal ID:ASG2022188)。
文摘Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.
文摘Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity.To overcome these obstacles,researchers have created several network IDS models,such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques.This study provides an updated learning strategy for artificial neural network(ANN)to address data categorization problems caused by unbalanced data.Compared to traditional approaches,the augmented ANN’s 92%accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity,brought about by the addition of a random weight and standard scaler.Considering the ever-evolving nature of cybersecurity threats,this study introduces a revolutionary intrusion detection method.
文摘Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privacy-preserving Web3 scenarios.However,DFL faces incentive and security challenges in the decentralized framework.To address these issues,this paper presents a Hierarchical Blockchain-enabled DFL(HBDFL)system,which provides a generic solution framework for the DFL-related applications.The proposed system consists of four major components,including a model contribution-based reward mechanism,a Proof of Elapsed Time and Accuracy(PoETA)consensus algorithm,a Distributed Reputation-based Verification Mechanism(DRTM)and an Accuracy-Dependent Throughput Management(ADTM)mechanism.The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets,while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput.The DRTM improves the system efficiency in consensus,and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy.The performance of the proposed HBDFL system is evaluated by numerical simulations,with the results showing that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.
基金supported by Chongqing Key Laboratory of New Energy Materials and Devices,and Wuhan University Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education of China.The authors also acknowledge the financial support from the Chongqing University of Technology(2024ZDZ029).
文摘Wide-bandgap(WBG)perovskite solar cells(PSCs)have gained remarkable interest owing to their latent applications in tandem solar cells(TSCs).Among them,four-terminal(4T)all-perovskite TSCs have received extensive attention as its do without need to consider current matching,surface roughness,and fabrication processes.However,low open-circuit voltage(VOC)and efficiency of WBG PSCs obstacles their applications in 4T allperovskite TSCs.Hence,this review firstly discussed the optimizing strategy in perovskite materials layer and properties.Specifically,we assessed the effect of composition,additive and interface engineering on the efficiency and VOC of WBG PSCs.Secondly,the demonstrated applications of different passivation layers designing for intensifying the efficiency of WBG PSCs and 4T all-perovskite TSCs is discussed.Finally,we put forward three specific approaches for future research,in our view,which would offer appropriate guidance for the exploitation of highly efficient and stable 4T all-perovskite TSCs.
基金supported by Beijing Natural Science Foundation under Grant L242006.
文摘The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a novel carrier-interleaved pulse width modulation(CIPWM)method that satisfies the volt-sec balance principle is proposed with an advanced carrier distribution rule.By adopting the proposed CIPWM method,the redundant switching states of 4L-NNPC inverters can be evenly distributed into the output PWM waveform in each carrier period,and natural flying-capacitor voltage balance can be achieved.Furthermore,an active balancing strategy is also proposed to eliminate the voltage unbalance caused by nonideal factors,which is realized by simply adjusting the duty cycle and with no need to adjust the redundant switching states for 4L-NNPC inverters.The simulation and experimental results verify the effectiveness of the proposed CIPWM method and the flying-capacitor voltage balancing strategy.
基金supported by A*STAR under the“Nanosystems at the Edge”program(Grant No.A18A4b0055)Ministry of Education(MOE)under the research grant of R-263-000-F18-112/A-0009520-01-00+1 种基金National Research Foundation Singapore grant CRP28-2022-0038the Reimagine Re-search Scheme(RRSC)Project(Grant A-0009037-02-00&A0009037-03-00)at National University of Singapore.
文摘Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.