期刊文献+
共找到8,687篇文章
< 1 2 250 >
每页显示 20 50 100
Laboratory or Department?Exploration and Creation in Computer Science and Technology
1
作者 Ann Copestake 《计算机教育》 2024年第3期13-16,共4页
In the very beginning,the Computer Laboratory of the University of Cambridge was founded to provide computing service for different disciplines across the university.As computer science developed as a discipline in it... In the very beginning,the Computer Laboratory of the University of Cambridge was founded to provide computing service for different disciplines across the university.As computer science developed as a discipline in its own right,boundaries necessarily arose between it and other disciplines,in a way that is now often detrimental to progress.Therefore,it is necessary to reinvigorate the relationship between computer science and other academic disciplines and celebrate exploration and creativity in research.To do this,the structures of the academic department have to act as supporting scaffolding rather than barriers.Some examples are given that show the efforts being made at the University of Cambridge to approach this problem. 展开更多
关键词 Laboratory or department University of Cambridge Boundaries Exploration and creativity
在线阅读 下载PDF
Multi-disciplinary Pathways to Computing:A Scalable and Col aborative Approach to Capitalize on the Demand for Computer Science Education
2
作者 Nancy M.Amato 《计算机教育》 2024年第3期10-12,共3页
The number of students demanding computer science(CS)education is rapidly rising,and while faculty sizes are also growing,the traditional pipeline consisting of a CS major,a CS master’s,and then a move to industry or... The number of students demanding computer science(CS)education is rapidly rising,and while faculty sizes are also growing,the traditional pipeline consisting of a CS major,a CS master’s,and then a move to industry or a Ph.D.program is simply not scalable.To address this problem,the Department of Computing at the University of Illinois has introduced a multidisciplinary approach to computing,which is a scalable and collaborative approach to capitalize on the tremendous demand for computer science education.The key component of the approach is the blended major,also referred to as“CS+X”,where CS denotes computer science and X denotes a non-computing field.These CS+X blended degrees enable win-win partnerships among multiple subject areas,distributing the educational responsibilities while growing the entire university.To meet the demand from non-CS majors,another pathway that is offered is a graduate certificate program in addition to the traditional minor program.To accommodate the large number of students,scalable teaching tools,such as automatic graders,have also been developed. 展开更多
关键词 Multi-disciplinary Pathways A Scalable and Collaborative Approach Computer Science Education CS+X
在线阅读 下载PDF
Integration of data science with the intelligent IoT(IIoT):Current challenges and future perspectives 被引量:1
3
作者 Inam Ullah Deepak Adhikari +3 位作者 Xin Su Francesco Palmieri Celimuge Wu Chang Choi 《Digital Communications and Networks》 2025年第2期280-298,共19页
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s... The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions. 展开更多
关键词 Data science Internet of things(IoT) Big data Communication systems Networks Security Data science analytics
在线阅读 下载PDF
Panel Discussion on“Development Trends of Computer Science in the New Era”
4
作者 Andrew Yao Nancy M.Amato +3 位作者 Ann Copestake Sukyoung Ryu Yike Guo Yaqin Zhang 《计算机教育》 2024年第3期26-29,共4页
At the panel session of the 3rd Global Forum on the Development of Computer Science,attendees had an opportunity to deliberate recent issues affecting computer science departments as a result of the recent growth in t... At the panel session of the 3rd Global Forum on the Development of Computer Science,attendees had an opportunity to deliberate recent issues affecting computer science departments as a result of the recent growth in the field.6 heads of university computer science departments participated in the discussions,including the moderator,Professor Andrew Yao.The first issue was how universities are managing the growing number of applicants in addition to swelling class sizes.Several approaches were suggested,including increasing faculty hiring,implementing scalable teaching tools,and working closer with other departments through degree programs that integrate computer science with other fields.The second issue was about the position and role of computer science within broader science.Participants generally agreed that all fields are increasingly relying on computer science techniques,and that effectively disseminating these techniques to others is a key to unlocking broader scientific progress. 展开更多
关键词 Development trends Computer science
在线阅读 下载PDF
Computer Modeling Approaches for Blockchain-Driven Supply Chain Intelligence:A Review on Enhancing Transparency,Security,and Efficiency
5
作者 Puranam Revanth Kumar Gouse Baig Mohammad +4 位作者 Pallati Narsimhulu Dharnisha Narasappa Lakshmana Phaneendra Maguluri Subhav Singh Shitharth Selvarajan 《Computer Modeling in Engineering & Sciences》 2025年第9期2779-2818,共40页
Blockchain Technology(BT)has emerged as a transformative solution for improving the efficacy,security,and transparency of supply chain intelligence.Traditional Supply Chain Management(SCM)systems frequently have probl... Blockchain Technology(BT)has emerged as a transformative solution for improving the efficacy,security,and transparency of supply chain intelligence.Traditional Supply Chain Management(SCM)systems frequently have problems such as data silos,a lack of visibility in real time,fraudulent activities,and inefficiencies in tracking and traceability.Blockchain’s decentralized and irreversible ledger offers a solid foundation for dealing with these issues;it facilitates trust,security,and the sharing of data in real-time among all parties involved.Through an examination of critical technologies,methodology,and applications,this paper delves deeply into computer modeling based-blockchain framework within supply chain intelligence.The effect of BT on SCM is evaluated by reviewing current research and practical applications in the field.As part of the process,we delved through the research on blockchain-based supply chain models,smart contracts,Decentralized Applications(DApps),and how they connect to other cutting-edge innovations like Artificial Intelligence(AI)and the Internet of Things(IoT).To quantify blockchain’s performance,the study introduces analytical models for efficiency improvement,security enhancement,and scalability,enabling computational assessment and simulation of supply chain scenarios.These models provide a structured approach to predicting system performance under varying parameters.According to the results,BT increases efficiency by automating transactions using smart contracts,increases security by using cryptographic techniques,and improves transparency in the supply chain by providing immutable records.Regulatory concerns,challenges with interoperability,and scalability all work against broad adoption.To fully automate and intelligently integrate blockchain with AI and the IoT,additional research is needed to address blockchain’s current limitations and realize its potential for supply chain intelligence. 展开更多
关键词 Blockchain supply chain management TRANSPARENCY SECURITY smart contracts DECENTRALIZATION EFFICIENCY
在线阅读 下载PDF
Enhancing User Experience in AI-Powered Human-Computer Communication with Vocal Emotions Identification Using a Novel Deep Learning Method
6
作者 Ahmed Alhussen Arshiya Sajid Ansari Mohammad Sajid Mohammadi 《Computers, Materials & Continua》 2025年第2期2909-2929,共21页
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de... Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition. 展开更多
关键词 Human-computer communication(HCC) vocal emotions live vocal artificial intelligence(AI) deep learning(DL) selfish herd optimization-tuned long/short K term memory(SHO-LSTM)
在线阅读 下载PDF
Digital Twins and Cyber-Physical Systems:A New Frontier in Computer Modeling
7
作者 Vidyalakshmi G S Gopikrishnan +2 位作者 Wadii Boulila Anis Koubaa Gautam Srivastava 《Computer Modeling in Engineering & Sciences》 2025年第4期51-113,共63页
Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(D... Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(DT),acts as a virtual replica of physical assets or processes,facilitating better decision making through simulations and predictive analytics.CPS and DT underpin the evolution of Industry 4.0 by bridging the physical and digital domains.This survey explores their synergy,highlighting how DT enriches CPS with dynamic modeling,realtime data integration,and advanced simulation capabilities.The layered architecture of DTs within CPS is examined,showcasing the enabling technologies and tools vital for seamless integration.The study addresses key challenges in CPS modeling,such as concurrency and communication,and underscores the importance of DT in overcoming these obstacles.Applications in various sectors are analyzed,including smart manufacturing,healthcare,and urban planning,emphasizing the transformative potential of CPS-DT integration.In addition,the review identifies gaps in existing methodologies and proposes future research directions to develop comprehensive,scalable,and secure CPSDT systems.By synthesizing insights fromthe current literature and presenting a taxonomy of CPS and DT,this survey serves as a foundational reference for academics and practitioners.The findings stress the need for unified frameworks that align CPS and DT with emerging technologies,fostering innovation and efficiency in the digital transformation era. 展开更多
关键词 Cyber physical systems digital twin efficiency Industry 4.0 robustness and intelligence
在线阅读 下载PDF
Enhancing Military Visual Communication in Harsh Environments Using Computer Vision Techniques
8
作者 Shitharth Selvarajan Hariprasath Manoharan +2 位作者 Taher Al-Shehari Nasser A Alsadhan Subhav Singh 《Computers, Materials & Continua》 2025年第8期3541-3557,共17页
This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the... This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the photographs by reducing truncations in the existing images.Furthermore,the collected images undergo processing using histogram gradients and a flexible threshold value that may be adjusted in specific situations.Thus,it is possible to reduce the occurrence of overlapping circumstances in collective picture characteristics by substituting grey-scale photos with colorized factors.The proposed method offers additional robust feature representations by imposing a limiting factor to reduce overall scattering values.This is achieved by visualizing a graphical function.Moreover,to derive valuable insights from a series of photos,both the separation and in-version processes are conducted.This involves analyzing comparison results across four different scenarios.The results of the comparative analysis show that the proposed method effectively reduces the difficulties associated with time and space to 1 s and 3%,respectively.In contrast,the existing strategy exhibits higher complexities of 3 s and 9.1%,respectively. 展开更多
关键词 Image enhancement visual information harsh environment computer vision
在线阅读 下载PDF
Complex adaptive systems science in the era of global sustainability crisis
9
作者 Li An B.L.Turner II +4 位作者 Jianguo Liu Volker Grimm Qi Zhang Zhangyang Wang Ruihong Huang 《Geography and Sustainability》 2025年第1期14-24,共11页
A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,... A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms. 展开更多
关键词 Social-environmental systems Complex adaptive systems Sustainability science Agent-based models Artificial intelligence Data science
在线阅读 下载PDF
Forecasting Budget Estimated Using Time-Series—Case Study on College of Computer Science and Information Technology 被引量:1
10
作者 Foriaa Ahmed Elbasheer Samani A. Talab 《Intelligent Information Management》 2014年第3期142-148,共7页
The need for information systems in organizations and economic units increases as there is a great deal of data that arise from doing many of the processes in order to be addressed to provide information that can brin... The need for information systems in organizations and economic units increases as there is a great deal of data that arise from doing many of the processes in order to be addressed to provide information that can bring interest to multi-users, the new and distinctive management accounting systems which meet in a manner easily all the needs of institutions and individuals from financial business, accounting and management, which take into account the accuracy, speed and confidentiality of the information for which the system is designed. The paper aims to describe a computerized system that is able to predict the budget for the new year based on past budgets by using time series analysis, which gives results with errors to a minimum and controls the budget during the year, through the ability to control exchange, compared to the scheme with the investigator and calculating the deviation, measurement of performance ratio and the expense of a number of indicators relating to budgets, such as the rate of condensation of capital, the growth rate and profitability ratio and gives a clear indication whether these ratios are good or not. There is a positive impact on information systems through this system for its ability to accomplish complex calculations and process paperwork, which is faster than it was previously and there is also a high flexibility, where the system can do any adjustments required in helping relevant parties to control the financial matters of the decision-making appropriate action thereon. 展开更多
关键词 Budgets Information ACCOUNTING PREDICT Time SERIES Analysis
暂未订购
Prerequisite Relations among Knowledge Units:A Case Study of Computer Science Domain
11
作者 Fatema Nafa Amal Babour Austin Melton 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第12期639-652,共14页
The importance of prerequisites for education has recently become a promising research direction.This work proposes a statistical model for measuring dependencies in learning resources between knowledge units.Instruct... The importance of prerequisites for education has recently become a promising research direction.This work proposes a statistical model for measuring dependencies in learning resources between knowledge units.Instructors are expected to present knowledge units in a semantically well-organized manner to facilitate students’understanding of the material.The proposed model reveals how inner concepts of a knowledge unit are dependent on each other and on concepts not in the knowledge unit.To help understand the complexity of the inner concepts themselves,WordNet is included as an external knowledge base in thismodel.The goal is to develop a model that will enable instructors to evaluate whether or not a learning regime has hidden relationships which might hinder students’ability to understand the material.The evaluation,employing three textbooks,shows that the proposed model succeeds in discovering hidden relationships among knowledge units in learning resources and in exposing the knowledge gaps in some knowledge units. 展开更多
关键词 Knowledge graph text mining knowledge unit graph mining
在线阅读 下载PDF
Recent Development of Computer Science Education in USA
12
作者 Yi Pan 《计算机教育》 2016年第4期1-2,共2页
Computer science(CS)is a discipline to study the scientific and practical approach to computation and its applications.As we enter into the Internet era,computers and the Internet have become intimate parts of our dai... Computer science(CS)is a discipline to study the scientific and practical approach to computation and its applications.As we enter into the Internet era,computers and the Internet have become intimate parts of our daily life.Due to its rapid development and wide applications recently,more CS graduates are needed in industries around the world.In USA,this situation is even more severe due to the rapid expansions of several big IT related companies such as Microsoft,Google,Facebook,Amazon,IBM etc.Hence,how to effectively train a large number of 展开更多
关键词 Recent Development of Computer Science Education in USA
在线阅读 下载PDF
Automatic Fetal Segmentation Designed on Computer-Aided Detection with Ultrasound Images
13
作者 Mohana Priya Govindarajan Sangeetha Subramaniam Karuppaiya Bharathi 《Computers, Materials & Continua》 SCIE EI 2024年第11期2967-2986,共20页
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of pregnancy.The HC might be ut... In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of pregnancy.The HC might be utilized toward determining gestational age and tracking fetal development.This automated approach is particularly valuable in low-resource settings where access to trained sonographers is limited.The CAD system is divided into two steps:to begin,Haar-like characteristics were extracted from ultrasound pictures in order to train a classifier using random forests to find the fetal skull.We identified the HC using dynamic programming,an elliptical fit,and a Hough transform.The computer-aided detection(CAD)program was well-trained on 999 pictures(HC18 challenge data source),and then verified on 335 photos from all trimesters in an independent test set.A skilled sonographer and an expert in medicine personally marked the test set.We used the crown-rump length(CRL)measurement to calculate the reference gestational age(GA).In the first,second,and third trimesters,the median difference between the standard GA and the GA calculated by the skilled sonographer stayed at 0.7±2.7,0.0±4.5,and 2.0±12.0 days,respectively.The regular duration variance between the baseline GA and the health investigator’s GA remained 1.5±3.0,1.9±5.0,and 4.0±14 a couple of days.The mean variance between the standard GA and the CAD system’s GA remained between 0.5 and 5.0,with an additional variation of 2.9 to 12.5 days.The outcomes reveal that the computer-aided detection(CAD)program outperforms an expert sonographer.When paired with the classifications reported in the literature,the provided system achieves results that are comparable or even better.We have assessed and scheduled this computerized approach for HC evaluation,which includes information from all trimesters of gestation. 展开更多
关键词 Fetal growth SEGMENTATION ultrasound images computer-aided detection gestational age crown-rump length head circumference
在线阅读 下载PDF
Early Detection of Colletotrichum Kahawae Disease in Coffee Cherry Based on Computer Vision Techniques
14
作者 Raveena Selvanarayanan Surendran Rajendran Youseef Alotaibi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期759-782,共24页
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease ... Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%. 展开更多
关键词 Computer vision coffee berry disease colletotrichum kahawae XG boost shapley additive explanations
在线阅读 下载PDF
Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors:Challenges and Future Trends
15
作者 Narayanan Ganesh Rajendran Shankar +3 位作者 Miroslav Mahdal Janakiraman SenthilMurugan Jasgurpreet Singh Chohan Kanak Kalita 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期103-141,共39页
Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than ot... Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than other traditional machine learning(ML)methods inCV.DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization,object detection,and face recognition.In this review,a structured discussion on the history,methods,and applications of DL methods to CV problems is presented.The sector-wise presentation of applications in this papermay be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV.This review will provide readers with context and examples of how these techniques can be applied to specific areas.A curated list of popular datasets and a brief description of them are also included for the benefit of readers. 展开更多
关键词 Neural network machine vision classification object detection deep learning
在线阅读 下载PDF
Axonal Conduction Velocity: A Computer Study
16
作者 Arthur D. Snider Aman Chawla Salvatore D. Morgera 《Journal of Applied Mathematics and Physics》 2024年第1期60-71,共12页
This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between ... This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between conduction velocity and the impulse profile. Computer simulations are used to bolster the analysis. 展开更多
关键词 NEURON AXON Action Potential Conduction Velocity INTERNODE
在线阅读 下载PDF
双忆阻类脑混沌神经网络及其在IoMT数据隐私保护中应用
17
作者 蔺海荣 段晨星 +1 位作者 邓晓衡 Geyong Min 《电子与信息学报》 北大核心 2025年第7期2194-2210,共17页
近年来,医疗数据泄露频发,严重威胁患者隐私与健康安全,亟需有效的解决方案以保护医疗数据在传输过程中的隐私与安全性。该文提出了一种基于双忆阻类脑混沌神经网络的医疗物联网(Internet of Medical Things,IoMT)数据隐私保护方法,以... 近年来,医疗数据泄露频发,严重威胁患者隐私与健康安全,亟需有效的解决方案以保护医疗数据在传输过程中的隐私与安全性。该文提出了一种基于双忆阻类脑混沌神经网络的医疗物联网(Internet of Medical Things,IoMT)数据隐私保护方法,以应对这一挑战。首先,利用忆阻器的突触仿生特性,构建了一种基于Hopfield神经网络的双忆阻类脑混沌神经网络模型,并通过分岔图、Lyapunov指数谱、相图、时域图及吸引盆等非线性动力学工具,深入揭示了模型的复杂混沌动力学特性。研究结果表明,该网络不仅展现出复杂的网格多结构混沌吸引子特性,还具有平面初值位移调控能力,从而显著增强了其密码学应用潜力。为了验证其实用性与可靠性,基于微控制器单元(MCU)搭建了硬件平台,并通过硬件实验进一步确认了模型的复杂动力学行为。基于此模型,该文设计了一种结合双忆阻类脑混沌神经网络复杂混沌特性的高效IoMT数据隐私保护方法。在此基础上,对彩色医疗图像数据的加密效果进行了全面的安全性分析。实验结果表明,该方法在关键性能指标上表现优异,包括大密钥空间、低像素相关性、高密钥敏感性,以及对噪声与数据丢失攻击的强鲁棒性。该研究为IoMT环境下的医疗数据隐私保护提供了一种创新且有效的解决方案,为未来的智能医疗安全技术发展奠定了坚实基础。 展开更多
关键词 忆阻器 混沌系统 HOPFIELD神经网络 多吸引子 混沌加密
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
18
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
基于网络空间欺骗的移动目标防御技术研究
19
作者 张雅勤 马多贺 +2 位作者 Xiaoyan Sun 周川 刘峰 《信息安全学报》 2025年第2期180-195,共16页
移动目标防御(Moving Target Defense,MTD)是改变当前网络空间“易攻难守”的攻防不对称局面的革命性技术之一。MTD的基本思想是通过持续不断地转换攻击面,增加攻击者攻击的困难度和复杂度。如何选取转换属性,提高属性攻击面转换空间是... 移动目标防御(Moving Target Defense,MTD)是改变当前网络空间“易攻难守”的攻防不对称局面的革命性技术之一。MTD的基本思想是通过持续不断地转换攻击面,增加攻击者攻击的困难度和复杂度。如何选取转换属性,提高属性攻击面转换空间是MTD领域研究的重点问题。多样化、冗余和欺骗是当前属性攻击面转换空间构造的主要方法。其中,多样化和冗余策略在构建攻击面转换空间时,存在构建成本高以及系统兼容性等问题,使得传统的移动目标防御无论在理论研究,还是在实际应用中都遇到了很大瓶颈。而欺骗策略则为解决这一困难问题提供了契机。欺骗策略由于其虚虚实实的变化,蜜罐、蜜饵、面包屑等多样化的欺骗方式,以及构建成本低、构造欺骗属性容易等特性,被提出用于扩大攻击面转换空间,成为MTD研究的重要技术手段和工具。首先,比较了基于网络空间欺骗的MTD与经典MTD(基于多样化和冗余的MTD)的差异,明确了网络空间欺骗在移动目标防御中发挥的重要价值;然后,基于MTD攻击面理论,提出了欺骗攻击面的概念,并基于此概念对欺骗移动目标防御进行了形式化定义;接着,根据网络空间欺骗机制的作用范围和需应对的攻击威胁,从网络层、系统层、应用层和数据层对基于欺骗的MTD技术及其应用进行了探索与分类,并从理论和实验两个维度总结基于欺骗的MTD有效性的评估方法;最后,归纳了研究面临的主要问题与挑战,并讨论了未来可能的研究方向。 展开更多
关键词 移动目标防御 网络空间欺骗 网络空间安全 评估方法
在线阅读 下载PDF
Enhancing cyber threat detection with an improved artificial neural network model 被引量:1
20
作者 Toluwase Sunday Oyinloye Micheal Olaolu Arowolo Rajesh Prasad 《Data Science and Management》 2025年第1期107-115,共9页
Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injec... Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems(IDS).Data labeling difficulties,incorrect conclusions,and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity.To overcome these obstacles,researchers have created several network IDS models,such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques.This study provides an updated learning strategy for artificial neural network(ANN)to address data categorization problems caused by unbalanced data.Compared to traditional approaches,the augmented ANN’s 92%accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity,brought about by the addition of a random weight and standard scaler.Considering the ever-evolving nature of cybersecurity threats,this study introduces a revolutionary intrusion detection method. 展开更多
关键词 CYBERSECURITY Intrusion detection Deep learning Artificial neural network Imbalanced data classification
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部