Natural enzymes are able to precisely bind substrates and catalyze activities because of their distinct framework structures.To mimic this ability,chemists are designing framework structures that resemble real enzymes...Natural enzymes are able to precisely bind substrates and catalyze activities because of their distinct framework structures.To mimic this ability,chemists are designing framework structures that resemble real enzymes.The use of metal-organic frameworks(MOFs)to mimic natural enzymes has advanced recently;this paper reviews these developments.This research specifically focuses on how the catalytically active center of natural enzymes can be exactly replicated by carefully controlling the composition and structure of MOFs.By identifying and attaching to substrates,MOFs can accelerate changes in a manner akin to that of real enzymes.The role of MOFs in simulating catalytic processes,enzyme activity,and potential uses in brain chemistry are also investigated in this work.It also discusses the most recent MOF applications in detecting and treating chemical abnormalities of the brain.The report finishes with a discussion of future research areas and potential applications,providing useful insights for researchers in the subject.展开更多
Developing advanced polymer electrolytes in lithium metal batteries(LMBs)has gained significant attention because of their inherent safety advantages over liquid electrolytes,while still encountering great challenges ...Developing advanced polymer electrolytes in lithium metal batteries(LMBs)has gained significant attention because of their inherent safety advantages over liquid electrolytes,while still encountering great challenges in mitigating uneven lithium plating/stripping and dendrite growth.Previous efforts primarily focused on passive approaches to mechanically constrain lithium dendrite growth.Recent studies have revealed the significance and effectiveness of regulating supramolecular interactions between polymer chains and other electrolyte components for homogenizing lithium deposition and enhancing the interfacial stability.This report provides a timely critical review to cover recent inspiring advancements in this direction.We first summarize the origins of supramolecular interaction origins,strength-determining factors,and structure–property relationships to establish quantitative correlations between polymer composition and supramolecular interaction properties.Then the recent advances in regulating supramolecular interaction chemistry are comprehensively discussed,focusing on those towards accelerated mass transport and stabilized anode-electrolyte interface.Finally,the remaining challenges are highlighted,and potential future directions in supramolecular interaction regulation of polymer electrolytes are prospected for the practical application of LMBs.展开更多
Aqueous batteries with metal anodes exhibit robust anodic capacities,but their energy densities are low because of the limited potential stabilities of aqueous electrolyte solutions.Current metal options,such as Zn an...Aqueous batteries with metal anodes exhibit robust anodic capacities,but their energy densities are low because of the limited potential stabilities of aqueous electrolyte solutions.Current metal options,such as Zn and Al,pose a dilemma:Zn lacks a sufficiently low redox potential,whereas Al tends to be strongly oxidized in aqueous environments.Our investigation introduces a novel rechargeable aqueous battery system based on Mn as the anode.We examine the effects of anions,electrolyte concentration,and diverse cathode chemistries.Notably,the ClO_(4)-based electrolyte solution exhibits improved deposition and dissolution efficiencies.Although stainless steel(SS 316 L)and Ni are stable current collectors for cathodes,they display limitations as anodes.However,using Ti as the anode resulted in increased Mn deposition and dissolution efficiencies.Moreover,we evaluate this system using various cathode materials,including Mn-intercalation-based inorganic(Ag0.33V2O5)and organic(perylenetetracarboxylic dianhydride)cathodes and an anionintercalation-chemistry(coronene)-based cathode.These configurations yield markedly higher output potentials compared to those of Zn metal batteries,highlighting the potential for an augmented energy density when using an Mn anode.This study outlines a systematic approach for use in optimizing metal anodes in Mn metal batteries,unlocking novel prospects for Mn-based batteries with diverse cathode chemistries.展开更多
Metal-sulfur electrochemistry represents a promising energy storage technology due to the natural abundance and unparalleled theoretical specific capacity of 1675 mAh g^(-1)of sulfur based on two-electron redox reacti...Metal-sulfur electrochemistry represents a promising energy storage technology due to the natural abundance and unparalleled theoretical specific capacity of 1675 mAh g^(-1)of sulfur based on two-electron redox reaction(S^(0)■S^(2-)).Commercially viable metal-sulfur batteries(MSBs)are hindered by sluggish sulfur conversion kinetics,which reduce the utilization efficiency of sulfur and lead to polysulfide shuttling.Single-atom catalysts(SACs)exhibit specific catalytic activity,a high atomic utilization ratio,and flexible selectivity,and are considered exceptional electrocatalysts for addressing the intractable challenges encountered by the MSBs.This review summarizes the recent progress in SACs for boosting the sulfur electrochemistry in MSBs,focusing on sulfur host materials,modified separators and functional interlayers,and analyzes the in-depth mechanisms of SACs.Moreover,the correlation between the coordination environments and the intrinsic activity of SACs is discussed.Finally,the main challenges and potential research directions of SACs for high-energy-density and long-life MSBs are outlined.This study provides significant guidance for constructing novel SACs that can accelerate the sulfur conversion kinetics in MSBs.展开更多
Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recove...Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries.展开更多
Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-i...Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-ion batteries.However,their practical deployment has long been plagued by the infamous“shuttle effect”of soluble Li polysulfides(LiPSs)and the rampant growth of Li dendrites.Therefore,it is important to specifically elucidate the solvation structure in the Li-S system and systematically summarize the feasibility strategies that can simultaneously suppress the shuttle effect and the growth of Li dendrites for practical applications.This review attempts to achieve this goal.In this review,we first introduce the importance of developing Li-S batteries and highlight the key challenges.Then,we revisit the working principles of Li-S batteries and underscore the fundamental understanding of LiPSs.Next,we summarize some representative characterization techniques and theoretical calculations applied to characterize the solvation structure of LiPSs.Afterward,we overview feasible designing strategies that can simultaneously suppress the shuttle effect of soluble LiPSs and the growth of Li dendrites.Finally,we conclude and propose personal insights and perspectives on the future development of Li-S batteries.We envisage that this timely review can provide some inspiration to build better Li-S batteries for promoting practical applications.展开更多
Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,...Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,energy,materials,quantum,and microelectronics.Surface science mainly investigates the correspondence between surface property and functionality.Scanning probe microscopy(SPM)techniques are important tools to characterize surface properties because of the capability of atomic-scale imaging,spectroscopy and manipulation at the single-atom level.In this review,we summarize recent advances in surface electronic,magnetic and optical properties characterized mainly by SPM-based methods.We focus on elucidating theπ-magnetism in graphene-based nanostructures,construction of spin qubits on surfaces,topology properties of surface organic structures,STM-based light emission,tip-enhanced Raman spectroscopy and integration of machine learning in SPM studies.展开更多
Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to wat...Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to water and oxygen.Despite the great research progress,the exact oxidation kinetics of Ti_(3)C_(2)T_(x)(MXene)and their final products after oxidation are not fully understood.Herein,we systematically tracked the oxidation process of few-layer Ti_(3)C_(2)T_(x)nanosheets in an aqueous solution at room temperature over several weeks.We also studied the oxidation effects on the electrocatalytic properties of Ti_(3)C_(2)T_(x)for hydrogen evolution reaction and found that the overpotential to achieve a current density of 10 mA cm^(-2)increases from 0.435 to 0.877 V after three weeks of degradation,followed by improvement to stabilized values of around 0.40 V after eight weeks.These results suggest that severely oxidized MXene could be a promising candidate for designing efficient catalysts.According to our detailed experimental characterization and theoretical calculations,unlike previous studies,black titanium oxide is formed as the final product in addition to white Ti(IV)oxide and disordered carbons after the complete oxidation of Ti_(3)C_(2)T_(x).This work presents significant advancements in better understanding of 2D Ti_(3)C_(2)T_(x)(MXene)oxidation and enhances the prospects of this material for various applications.展开更多
The paper discusses the advancements and applications of neural networks, specifically ChatGPT, in various fields, including chemistry education and research. It examines the benefits of AI and ChatGPT, such as their ...The paper discusses the advancements and applications of neural networks, specifically ChatGPT, in various fields, including chemistry education and research. It examines the benefits of AI and ChatGPT, such as their ability to process and analyze large amounts of data, create personalized training systems, and offer problem-solving recommendations. The paper delves into practical applications, showcasing how ChatGPT can be utilised to augment chemistry learning. It provides examples of using ChatGPT for creating tests, generating multiple-choice questions, and studying chemistry in general. Concerns are voiced about the ethical and societal impact of AI development. In conclusion, it explores the exciting potential of AI to tackle challenges that may exceed human capabilities alone, paving the way for further exploration and collaboration between humans and intelligent machines.展开更多
Serious diseases,particularly cancer,consistently pose significant threats to both national health and economic development[1].The cancer diagnosis methods such as fluorescent probes[2,3],as well as treatment techniqu...Serious diseases,particularly cancer,consistently pose significant threats to both national health and economic development[1].The cancer diagnosis methods such as fluorescent probes[2,3],as well as treatment techniques including photodynamic treatments[4]and targeted drugs[5]have attracted much attention in recent years.The development and practical application of these methods have become focal points within research works.Based on this,the 3rd Xihua Chemistry and Biomedicine Forum(XHCBF)was successfully convened by Xihua University in Chengdu from 3 to 6 July,2023.展开更多
The first Chinese Chemical Letters(CCL)Organic Chemistry Forum was held in Xiamen of Fujian in Jan.2018,followed by the successful events in Zhengzhou of Henan in Dec.2019 and Linzhi of Xizang in July 2021.The series ...The first Chinese Chemical Letters(CCL)Organic Chemistry Forum was held in Xiamen of Fujian in Jan.2018,followed by the successful events in Zhengzhou of Henan in Dec.2019 and Linzhi of Xizang in July 2021.The series of forums aim to build a high-level organic chemistry academic exchange platform for(Chinese)youthful organic chemists,fully showcase their latest fron-tier achievements,and enhance the international level of organic chemistry in China.At the same time,the convening of the series of forums has also played a positive role in promoting the devel-opment of China’s scientific journal publishing,accelerating the re-alization of the strategic goal of building a world-class journal.展开更多
In September 2018,we proposed the cutting-edge concept of“Beyond Limits Manufacturing”(BLM).BLM technology is based on the three-dimensional inner engraving or precise outer engraving of ultra-fast laser,to invent m...In September 2018,we proposed the cutting-edge concept of“Beyond Limits Manufacturing”(BLM).BLM technology is based on the three-dimensional inner engraving or precise outer engraving of ultra-fast laser,to invent micro/nano scale flow chips or devices,which makes it possible for the microform,integration,economy,safety,high efficiency,green and intelligence of research,development and manufacturing process,so as to realize transformational manufacturing in the era of Industry 4.0.In this paper,we reviewed the representative results we made in the field of micro/nano flow chemistry during the implementation of the BLM major project(December 2019 to August 2023),and discussed its application prospects in micro/nano flow chemistry.展开更多
Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin f...Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.展开更多
AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(...AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS),photoluminescence(PL)spectroscopy,electron spin resonance(ESR)spectroscopy,transient photocurrent and electrochemical impedance spectroscopy(EIS)were used to characterize binary composites.Tetracycline(TC)was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions,and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents.In addition,we further investigated the photocatalytic mechanism of the binary composite material AgVO_(3)/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst.The experimental results show that the degradation efficiency of 10%-AZ,prepared with a molar ratio of 10%AgVO_(3)and ZIF-8 to TC,was 75.0%.This indicates that the photocatalytic activity can be maintained even under a certain ionic content,making it a suitable photocatalyst for optimal use.In addition,the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.展开更多
Groundwater and surface water contamination by PTE(Potentially Toxic Elements)was assessed in Ruashi and Annexe municipalities of Lubumbashi city.Analyses of seventy water samples collected from six drilled wells,eigh...Groundwater and surface water contamination by PTE(Potentially Toxic Elements)was assessed in Ruashi and Annexe municipalities of Lubumbashi city.Analyses of seventy water samples collected from six drilled wells,eight spade-sunk wells,one river and one spring in both municipalities in 2017 and 2018 were carried out by ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry).Twenty PTEs including aluminum,arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium and zinc were detected at various concentrations in each one of the samples.Many samples had concentrations and mean concentrations of PTEs,such as aluminum,cadmium,copper,iron,lead,manganese,nickel and zinc,higher than the respective acceptable limits set for drinking water by the EU(European Union),the USEPA(United States Environmental Protection Agency),and the WHO(World Health Organization)standards.Most PTEs being deleterious to human health even at very low concentrations,people who use the groundwater and surface water to meet their water needs in both Ruashi and Annexe municipalities are at risk.展开更多
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela ...Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.展开更多
For environmental applications,it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer.Here,a novel Agbridged dual Z-scheme Ag/g-C_(3)N_(4)/CoNi...For environmental applications,it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer.Here,a novel Agbridged dual Z-scheme Ag/g-C_(3)N_(4)/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method,with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity,rapid combination of photogenerated carriers,and unstable structure.These materials were characterized by XRD,FT-IR,SEM,TEM UV-Vis/DRS,and XPS to verify the structure and stability of the heterostructure.The pristine LDH,g-C_(3)N_(4),and Ag/g-C_(3)N_(4)/CoNi-LDH composite were investigated as photocatalysts for water remediation,an environmentally motivated process.Specifically,the photocatalytic degradation of tetracycline was studied as a model reaction.The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon.The influence of several experimental parameters such as catalyst loading,pH,and tetracycline concentrationwere evaluated.The current study provides important data for water treatment and similar environmental protection applications.展开更多
基金financially supported by the National Natural Science Foundation,China(Nos.22074095&22374103(Y.Lin))Beijing Natural Science Foundation(No.2222005(Y.Lin))。
文摘Natural enzymes are able to precisely bind substrates and catalyze activities because of their distinct framework structures.To mimic this ability,chemists are designing framework structures that resemble real enzymes.The use of metal-organic frameworks(MOFs)to mimic natural enzymes has advanced recently;this paper reviews these developments.This research specifically focuses on how the catalytically active center of natural enzymes can be exactly replicated by carefully controlling the composition and structure of MOFs.By identifying and attaching to substrates,MOFs can accelerate changes in a manner akin to that of real enzymes.The role of MOFs in simulating catalytic processes,enzyme activity,and potential uses in brain chemistry are also investigated in this work.It also discusses the most recent MOF applications in detecting and treating chemical abnormalities of the brain.The report finishes with a discussion of future research areas and potential applications,providing useful insights for researchers in the subject.
基金support from The Hong Kong Polytechnic University(U-CDCA)and Innovation and Technology Fund(ITS-322-23FP)。
文摘Developing advanced polymer electrolytes in lithium metal batteries(LMBs)has gained significant attention because of their inherent safety advantages over liquid electrolytes,while still encountering great challenges in mitigating uneven lithium plating/stripping and dendrite growth.Previous efforts primarily focused on passive approaches to mechanically constrain lithium dendrite growth.Recent studies have revealed the significance and effectiveness of regulating supramolecular interactions between polymer chains and other electrolyte components for homogenizing lithium deposition and enhancing the interfacial stability.This report provides a timely critical review to cover recent inspiring advancements in this direction.We first summarize the origins of supramolecular interaction origins,strength-determining factors,and structure–property relationships to establish quantitative correlations between polymer composition and supramolecular interaction properties.Then the recent advances in regulating supramolecular interaction chemistry are comprehensively discussed,focusing on those towards accelerated mass transport and stabilized anode-electrolyte interface.Finally,the remaining challenges are highlighted,and potential future directions in supramolecular interaction regulation of polymer electrolytes are prospected for the practical application of LMBs.
基金supported by the Global Joint Research Program funded by the Pukyong National University(202411790001)。
文摘Aqueous batteries with metal anodes exhibit robust anodic capacities,but their energy densities are low because of the limited potential stabilities of aqueous electrolyte solutions.Current metal options,such as Zn and Al,pose a dilemma:Zn lacks a sufficiently low redox potential,whereas Al tends to be strongly oxidized in aqueous environments.Our investigation introduces a novel rechargeable aqueous battery system based on Mn as the anode.We examine the effects of anions,electrolyte concentration,and diverse cathode chemistries.Notably,the ClO_(4)-based electrolyte solution exhibits improved deposition and dissolution efficiencies.Although stainless steel(SS 316 L)and Ni are stable current collectors for cathodes,they display limitations as anodes.However,using Ti as the anode resulted in increased Mn deposition and dissolution efficiencies.Moreover,we evaluate this system using various cathode materials,including Mn-intercalation-based inorganic(Ag0.33V2O5)and organic(perylenetetracarboxylic dianhydride)cathodes and an anionintercalation-chemistry(coronene)-based cathode.These configurations yield markedly higher output potentials compared to those of Zn metal batteries,highlighting the potential for an augmented energy density when using an Mn anode.This study outlines a systematic approach for use in optimizing metal anodes in Mn metal batteries,unlocking novel prospects for Mn-based batteries with diverse cathode chemistries.
基金financial support from the National Natural Science Foundation of China(No.22379001 and 22309003)the Natural Science Research Project of Anhui Province Education department(No.2022AH030046)the Top Young Talents of Anhui University of Technology,the Young Scholars of the Introduction and Education of Talents in Anhui Province,and the Scientific Research Foundation of Anhui University of Technology for Talent Introduction。
文摘Metal-sulfur electrochemistry represents a promising energy storage technology due to the natural abundance and unparalleled theoretical specific capacity of 1675 mAh g^(-1)of sulfur based on two-electron redox reaction(S^(0)■S^(2-)).Commercially viable metal-sulfur batteries(MSBs)are hindered by sluggish sulfur conversion kinetics,which reduce the utilization efficiency of sulfur and lead to polysulfide shuttling.Single-atom catalysts(SACs)exhibit specific catalytic activity,a high atomic utilization ratio,and flexible selectivity,and are considered exceptional electrocatalysts for addressing the intractable challenges encountered by the MSBs.This review summarizes the recent progress in SACs for boosting the sulfur electrochemistry in MSBs,focusing on sulfur host materials,modified separators and functional interlayers,and analyzes the in-depth mechanisms of SACs.Moreover,the correlation between the coordination environments and the intrinsic activity of SACs is discussed.Finally,the main challenges and potential research directions of SACs for high-energy-density and long-life MSBs are outlined.This study provides significant guidance for constructing novel SACs that can accelerate the sulfur conversion kinetics in MSBs.
基金supports from the Beijing Laboratory of New Energy Storage Technology, North China Electric Power Universitythe Program of the National Energy Storage Industry-Education Platformthe Interdisciplinary Innovation Program of North China Electric Power University (No. XM2212315)
文摘Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries.
基金financially supported by the National Natural Science Foundation of China(51972064 and 52222315)
文摘Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-ion batteries.However,their practical deployment has long been plagued by the infamous“shuttle effect”of soluble Li polysulfides(LiPSs)and the rampant growth of Li dendrites.Therefore,it is important to specifically elucidate the solvation structure in the Li-S system and systematically summarize the feasibility strategies that can simultaneously suppress the shuttle effect and the growth of Li dendrites for practical applications.This review attempts to achieve this goal.In this review,we first introduce the importance of developing Li-S batteries and highlight the key challenges.Then,we revisit the working principles of Li-S batteries and underscore the fundamental understanding of LiPSs.Next,we summarize some representative characterization techniques and theoretical calculations applied to characterize the solvation structure of LiPSs.Afterward,we overview feasible designing strategies that can simultaneously suppress the shuttle effect of soluble LiPSs and the growth of Li dendrites.Finally,we conclude and propose personal insights and perspectives on the future development of Li-S batteries.We envisage that this timely review can provide some inspiration to build better Li-S batteries for promoting practical applications.
文摘Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,energy,materials,quantum,and microelectronics.Surface science mainly investigates the correspondence between surface property and functionality.Scanning probe microscopy(SPM)techniques are important tools to characterize surface properties because of the capability of atomic-scale imaging,spectroscopy and manipulation at the single-atom level.In this review,we summarize recent advances in surface electronic,magnetic and optical properties characterized mainly by SPM-based methods.We focus on elucidating theπ-magnetism in graphene-based nanostructures,construction of spin qubits on surfaces,topology properties of surface organic structures,STM-based light emission,tip-enhanced Raman spectroscopy and integration of machine learning in SPM studies.
基金supported by the Australian Research Council(DE220100521 and DP200101217)supported by Fellow research grant of National University of Mongolia(No.P2021-4197)+2 种基金the support of Griffith University internal grantssupport from King Abdullah University of Science and Technology(KAUST)through the Ibn Rushd Postdoctoral Fellowship Awardsupport from the US Office of Naval Research(ONR),Office of Naval Research Global(ONRG)under the grant N62909-23-1-2035。
文摘Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to water and oxygen.Despite the great research progress,the exact oxidation kinetics of Ti_(3)C_(2)T_(x)(MXene)and their final products after oxidation are not fully understood.Herein,we systematically tracked the oxidation process of few-layer Ti_(3)C_(2)T_(x)nanosheets in an aqueous solution at room temperature over several weeks.We also studied the oxidation effects on the electrocatalytic properties of Ti_(3)C_(2)T_(x)for hydrogen evolution reaction and found that the overpotential to achieve a current density of 10 mA cm^(-2)increases from 0.435 to 0.877 V after three weeks of degradation,followed by improvement to stabilized values of around 0.40 V after eight weeks.These results suggest that severely oxidized MXene could be a promising candidate for designing efficient catalysts.According to our detailed experimental characterization and theoretical calculations,unlike previous studies,black titanium oxide is formed as the final product in addition to white Ti(IV)oxide and disordered carbons after the complete oxidation of Ti_(3)C_(2)T_(x).This work presents significant advancements in better understanding of 2D Ti_(3)C_(2)T_(x)(MXene)oxidation and enhances the prospects of this material for various applications.
文摘The paper discusses the advancements and applications of neural networks, specifically ChatGPT, in various fields, including chemistry education and research. It examines the benefits of AI and ChatGPT, such as their ability to process and analyze large amounts of data, create personalized training systems, and offer problem-solving recommendations. The paper delves into practical applications, showcasing how ChatGPT can be utilised to augment chemistry learning. It provides examples of using ChatGPT for creating tests, generating multiple-choice questions, and studying chemistry in general. Concerns are voiced about the ethical and societal impact of AI development. In conclusion, it explores the exciting potential of AI to tackle challenges that may exceed human capabilities alone, paving the way for further exploration and collaboration between humans and intelligent machines.
文摘Serious diseases,particularly cancer,consistently pose significant threats to both national health and economic development[1].The cancer diagnosis methods such as fluorescent probes[2,3],as well as treatment techniques including photodynamic treatments[4]and targeted drugs[5]have attracted much attention in recent years.The development and practical application of these methods have become focal points within research works.Based on this,the 3rd Xihua Chemistry and Biomedicine Forum(XHCBF)was successfully convened by Xihua University in Chengdu from 3 to 6 July,2023.
文摘The first Chinese Chemical Letters(CCL)Organic Chemistry Forum was held in Xiamen of Fujian in Jan.2018,followed by the successful events in Zhengzhou of Henan in Dec.2019 and Linzhi of Xizang in July 2021.The series of forums aim to build a high-level organic chemistry academic exchange platform for(Chinese)youthful organic chemists,fully showcase their latest fron-tier achievements,and enhance the international level of organic chemistry in China.At the same time,the convening of the series of forums has also played a positive role in promoting the devel-opment of China’s scientific journal publishing,accelerating the re-alization of the strategic goal of building a world-class journal.
文摘In September 2018,we proposed the cutting-edge concept of“Beyond Limits Manufacturing”(BLM).BLM technology is based on the three-dimensional inner engraving or precise outer engraving of ultra-fast laser,to invent micro/nano scale flow chips or devices,which makes it possible for the microform,integration,economy,safety,high efficiency,green and intelligence of research,development and manufacturing process,so as to realize transformational manufacturing in the era of Industry 4.0.In this paper,we reviewed the representative results we made in the field of micro/nano flow chemistry during the implementation of the BLM major project(December 2019 to August 2023),and discussed its application prospects in micro/nano flow chemistry.
基金supported by the Fundamental Research Funds for the Central Universities(QNTD202302)National Natural Science Foundation of China(22378024)the Foreign expert program(G2022109001L).
文摘Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years.Herein,taking advantage of the“lignin first”strategy,corn straw is converted to valuable chemicals including lignin monomers,furfural and 5-methoxymethylfurfural via a two steps process.The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol.The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives,thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up.In the initial step,depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%.Subsequently,in a dimethyl carbonate system,the carbohydrate component underwent complete conversion in a one-pot process,yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.
文摘AgVO_(3)/ZIF-8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO_(3)and ZIF-8.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-power transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS),photoluminescence(PL)spectroscopy,electron spin resonance(ESR)spectroscopy,transient photocurrent and electrochemical impedance spectroscopy(EIS)were used to characterize binary composites.Tetracycline(TC)was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions,and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents.In addition,we further investigated the photocatalytic mechanism of the binary composite material AgVO_(3)/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst.The experimental results show that the degradation efficiency of 10%-AZ,prepared with a molar ratio of 10%AgVO_(3)and ZIF-8 to TC,was 75.0%.This indicates that the photocatalytic activity can be maintained even under a certain ionic content,making it a suitable photocatalyst for optimal use.In addition,the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.
基金funding received from UNESCO-SIDA Project as well as Professor Martine Leermakers and Professor Willy Baeyens for their financial help to analyze the water samples in their laboratory at VUB.Acknowledgements
文摘Groundwater and surface water contamination by PTE(Potentially Toxic Elements)was assessed in Ruashi and Annexe municipalities of Lubumbashi city.Analyses of seventy water samples collected from six drilled wells,eight spade-sunk wells,one river and one spring in both municipalities in 2017 and 2018 were carried out by ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry).Twenty PTEs including aluminum,arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium and zinc were detected at various concentrations in each one of the samples.Many samples had concentrations and mean concentrations of PTEs,such as aluminum,cadmium,copper,iron,lead,manganese,nickel and zinc,higher than the respective acceptable limits set for drinking water by the EU(European Union),the USEPA(United States Environmental Protection Agency),and the WHO(World Health Organization)standards.Most PTEs being deleterious to human health even at very low concentrations,people who use the groundwater and surface water to meet their water needs in both Ruashi and Annexe municipalities are at risk.
文摘Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
文摘For environmental applications,it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer.Here,a novel Agbridged dual Z-scheme Ag/g-C_(3)N_(4)/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method,with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity,rapid combination of photogenerated carriers,and unstable structure.These materials were characterized by XRD,FT-IR,SEM,TEM UV-Vis/DRS,and XPS to verify the structure and stability of the heterostructure.The pristine LDH,g-C_(3)N_(4),and Ag/g-C_(3)N_(4)/CoNi-LDH composite were investigated as photocatalysts for water remediation,an environmentally motivated process.Specifically,the photocatalytic degradation of tetracycline was studied as a model reaction.The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon.The influence of several experimental parameters such as catalyst loading,pH,and tetracycline concentrationwere evaluated.The current study provides important data for water treatment and similar environmental protection applications.