In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information secu...In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.展开更多
Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related mortality worldwide1.The primary treatment options for this disease are surgical resection and liver transplantation.Unfortunately,most HCC ca...Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related mortality worldwide1.The primary treatment options for this disease are surgical resection and liver transplantation.Unfortunately,most HCC cases are diagnosed in advanced stages and are inoperable.Even after surgery,the long-term prognosis remains unsatisfactory,because of a high recurrence rate.展开更多
The search for photoactive materials that are able to efficiently produce solar fuels is a growing research field to tackle the current energy crisis.Herein,we have prepared two ionic non-noble metallo-supramolecular ...The search for photoactive materials that are able to efficiently produce solar fuels is a growing research field to tackle the current energy crisis.Herein,we have prepared two ionic non-noble metallo-supramolecular polymers Se-MTpy(M=Co or Ni),and constructed their composites with single-walled carbon nanotubes(CNTs)via electrostatic attraction andπ-πinteractions for efficient and stable photocatalytic hydrogen evolution.In the photocatalytic system,the cationic Se-MTpy as host and anionic CNTs as vip are assembled into a binary composite,which exhibits superior photocatalytic activity under visible light irradiation(>420 nm).The optimized CNT@Se-CoTpy composite,containing 1.2 wt%metal loading,achieves 7 times higher hydrogen evolution rate(2.47 mmol g^(-1)h^(-1))than bare Se-CoTpy(0.35 mmol g^(-1)h^(-1)).This is attributed to the constructive formation of junctions between polymer and CNTs,facilitating interfacial charge transfer and transport for efficient proton reduction.The composite system also shows high photostability after continuous irradiation for~30 h.The combination of experimental and theoretical analysis demonstrates the higher activity for reducing H_(2)O to H_(2)of Se-CoTpy than Se-NiTpy.The feasible interfacial architecture proposed in this study represents an effective approach to achieve high photocatalytic performance.展开更多
Background Predicting in-hospital mortality in elderly patients with dilated cardiomyopathy(DCM)is critical for improving clinical management.This study investigated the prognostic significance of mitral valve regurgi...Background Predicting in-hospital mortality in elderly patients with dilated cardiomyopathy(DCM)is critical for improving clinical management.This study investigated the prognostic significance of mitral valve regurgitant area(MVRA)as a predictor of in-hospital mortality.Methods A total of 813 elderly patients(age≥60 years)diag-nosed with DCM were included in this retrospective study,with admissions spanning from January 2010 to Decem-ber 2019.Univariate and multivariate Cox regression analyses were conducted to assess the association between MVRA and in-hospital mortality.Receiver operating characteristic(ROC)curve and Kaplan-Meier survival analy-ses were employed to assess the predictive performance of MVRA and to compare cumulative survival rates be-tween groups,respectively.Results MVRA was significantly associated with in-hospital mortality in both univar-iate and multivariate analyses(HR:1.119,95%CI:1.028-1.218,P=0.009).ROC curve analysis demonstrated good prognostic performance for MVRA[area under curve(AUC):0.714].Kaplan-Meier analysis revealed that patients with high MVRA(HMVRA)had significantly worse in-hospital survival outcomes(log-rank χ2=12.628,P<0.001).Conclusions An increase in MVRA is significantly associated with higher in-hospital mortality in elderly DCM patients,with an MVRA exceeding 7 cm2 indicating a notably increased mortality rate.MVRA serves as a simple and effective parameter for risk assessment and treatment monitoring in DCM patients.展开更多
Rare earth-based functional nanomaterials have wide applications in catalytic CO_(2)reduction reaction(CO_(2)RR)due to their impressive performance.In particular,the superior oxygen storage and release ability of Ce^(...Rare earth-based functional nanomaterials have wide applications in catalytic CO_(2)reduction reaction(CO_(2)RR)due to their impressive performance.In particular,the superior oxygen storage and release ability of Ce^(4+)/Ce^(3+)reversible pairs,the high coordination number and rich coordination geometry of lanthanide(La)metal ions and the unique stereoselectivity of samarium(Sm)reagents have aroused more and more interest among scientists.To enhance the catalytic activity of Ce,La,Sm(CLS)-based catalysts,recent developments of various modification strategies have been performed to promote the charge transfer and activation of CO_(2).This review constructively discussed the synthesis of modified CLS-based materials and the corresponding applications in thermal catalytic CO_(2)RR,photocatalytic CO_(2)RR,and electrocatalytic CO_(2)RR.Finally,the current difficulties of these materials and further research on the modification of rare earth-based catalysts,as well as the potential future development have been identified.展开更多
The first-ever synthesis of the unknown furo[2,3:4,5]pyrimido[1,2-b]indazole skeleton was demonstrated based on the undiscovered tetra-functionalization of enaminones,with simple substrates and reaction conditions.The...The first-ever synthesis of the unknown furo[2,3:4,5]pyrimido[1,2-b]indazole skeleton was demonstrated based on the undiscovered tetra-functionalization of enaminones,with simple substrates and reaction conditions.The key to realizing this process lies in the multiple trapping of the in situ generated ketenimine cation by the 3-aminoindazole,which results in the formation of four new chemical bonds and two new rings in one pot.Moreover,the products of this new reaction were found to exhibit aggregationinduced emission(AIE)without modification.展开更多
Compared to aqueous-phase electrocatalytic nitrogen reduction reaction(NRR),lithium-mediated NRR(Li-NRR)theoretically enhances the intrinsic activity of NH3 production through spontaneous exothermic reactions between ...Compared to aqueous-phase electrocatalytic nitrogen reduction reaction(NRR),lithium-mediated NRR(Li-NRR)theoretically enhances the intrinsic activity of NH3 production through spontaneous exothermic reactions between Li and N_(2).However,the in-situ generated solid electrolyte interphase(SEI)during the reaction slows down the Li^(+)transport and nucleation kinetics,which further hinders the subsequent activation and protonation processes.Herein,a sophisticated amorphous-crystalline heterostructured SEI of Zn-LiF is formed by additive engineering.The concerted electron interplay between amorphous and crystalline domains is prone to generate lithiophobic Zn and lithiophilic LiF sites,where lithiophobic Zn accelerates Li^(+)diffusion within the SEI and avoids high concentration polarization,and lithiophilic LiF ensures homogeneous nucleation of diffused Li^(+)and its participation in subsequent reactions.Therefore,compared to conventional SEI,a more than 8-fold performance improvement is achieved in the additive-engineered heterogeneous lithiophobic-lithiophilic SEI,which exhibits a high NH_(3)yield rate of 11.58 nmol s^(−1)cm^(−2)and a Faradaic efficiency of 32.97%.Thus,exploiting the synergistic effects in heterogeneous lithiophobic-lithiophilic structures to achieve functional complementarity between different components opens a new avenue toward high-performance Li-NRR.展开更多
Dispersing metals from nanoparticles to clusters is often achieved using ligand protection methods,which exhibit unique properties such as suppressing structure-sensitive side reactions.However,this method is limited ...Dispersing metals from nanoparticles to clusters is often achieved using ligand protection methods,which exhibit unique properties such as suppressing structure-sensitive side reactions.However,this method is limited by the use of different metal precursor salts corresponding to different ligands.An alternative approach,the ion exchange(IE)method,can overcome this limitation to some extent.Nevertheless,there is still an urgent need to address the stabilization of metals(especially precious metals)by using IE method.Here,we reported a Pt cluster catalyst prepared mainly by anchoring Pt atoms via O located near the framework Zn in zincosilicate zeolites and riveted by zeolite surface rings after reduction(reduced Pt/Zn-3-IE).The catalyst can achieve an initial propane conversion of 26%in a pure propane atmosphere at 550℃and shows little deactivation even after 7.5 d of operation.Moreover,the alteration of catalyst by the introduction of framework Zn was also highlighted and interpreted.展开更多
Cu-based metal-organic frameworks(Cu-MOFs)electrocatalysts are promising for CO_(2)reduction reactions(CO_(2)RR)to produce valuable C_(2+)products.However,designing suitable active sites in Cu-MOFs remains challenging...Cu-based metal-organic frameworks(Cu-MOFs)electrocatalysts are promising for CO_(2)reduction reactions(CO_(2)RR)to produce valuable C_(2+)products.However,designing suitable active sites in Cu-MOFs remains challenging due to their inherent structural instability during CO_(2)RR.Here we propose a synergistic strategy through thermal annealing and electrochemicalactivation process for in-situ reconstruction of the pre-designed Cu-MOFs to produce abundant partially oxidized Cu(Cu^(δ+))active species.The optimized MOF-derived Cu^(δ+)electrocatalyst demonstrates a highly selective production of C_(2+)products,with the Faradaic Efficiency(FE)of 78±2%and a partial current density of-46 m A cm-2at-1.06 VRHEin a standard H-type cell.Our findings reveal that the optimized Cu^(δ+)-rich surface remains stable during electrolysis and enhances surface charge transfer,leading to an increase in the concentration of*CO intermediates,thereby highly selectively producing C_(2+)compounds.This study advances the controllable formation of MOF-derived Cu^(δ+)-rich surfaces and strengthens the understanding of their catalytic role in CO_(2)RR for C_(2+)products.展开更多
As surgical procedures transition from conventional resection to advanced tissue-regeneration technologies,human disease therapy has witnessed a great leap forward.In particular,three-dimensional(3D)bioprinting stands...As surgical procedures transition from conventional resection to advanced tissue-regeneration technologies,human disease therapy has witnessed a great leap forward.In particular,three-dimensional(3D)bioprinting stands as a landmark in this setting,by promising the precise integration of biomaterials,cells,and bioactive molecules,thus opening up a novel avenue for tissue/organ regeneration.Curated by the editorial board of Bio-Design and Manufacturing,this review brings together a cohort of leading young scientists in China to dissect the core functionalities and evolutionary trajectory of 3D bioprinting,by elucidating the intricate challenges encountered in the manufacturing of transplantable organs.We further delve into the translational pathway from scientific research to clinical application,emphasizing the imperativeness of establishing a regulatory framework and rigorously enforcing quality-control measures.Finally,this review outlines the strategic landscape and innovative achievements of China in this field and provides a comprehensive roadmap for researchers worldwide to propel this field collectively to even greater heights.展开更多
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery ...With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.展开更多
The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning technique...The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning techniques,transfer printing emerges as one of the most efficient,cost-effective,and scalable methods.It boasts the ability for high-throughput fabrication of 0–3D micro-and nano-structures on flexible substrates,working in tandem with traditional lithography methods.This review highlights the critical issue of transfer printing:the flawless transfer of devices during the pick-up and printing process.We encapsulate recent advancements in numerous transfer printing techniques,with a particular emphasis on strategies to control adhesion forces at the substrate/device/stamp interfaces.These strategies are employed to meet the requirements of competing fractures for successful pick-up and print processes.The mechanism,advantages,disadvantages,and typical applications of each transfer printing technique will be thoroughly discussed.The conclusion section provides design guidelines and probes potential directions for future advancements.展开更多
Monochloroacetic acid(MCAA)is identified as a highly carcinogenic disinfection by-product in chlorinated drinking water.In this study,a series of CeO_(2)-supported Pd catalysts(Pd/MCeO_(2))were synthesized through one...Monochloroacetic acid(MCAA)is identified as a highly carcinogenic disinfection by-product in chlorinated drinking water.In this study,a series of CeO_(2)-supported Pd catalysts(Pd/MCeO_(2))were synthesized through one-step calcination of Pd-loaded Ce-UiO-66-BDC(CeMOF),and the liquid-phase catalytic hydrodechlorination of MCA A was explored using these catalysts.For comparison,Pd/CeO_(2)catalysts were additionally synthesized using the conventional impregnation method.The characterization results reveal that the catalysts exhibit strong metal-support interaction,leading to high Pd dispersion and Pd^(n+)content.Additionally,the calcination temperature significantly influences catalytic performance,with the catalyst calcined at 500℃(Pd/MCeO_(2)-500)demonstrating the highest catalytic activity and achieving complete dechlorination of MCA A within 50 min.Furthermore,it is found that the catalytic MCAA hydrodechlorination using the catalysts adheres to the Langmuir-Hinshelwood model.Accordingly,low reaction pH is favorable for the catalytic hydrodechlorination of MCAA,enhancing MCAA adsorption on the catalyst surface due to the electrostatic interaction between MCAA and the catalyst surface.Theoretical results suggest that the presence of Pd^(n+)efficiently facilitates MCAA adsorption and C-Cl cleavage,thus significantly enhancing the liquid-phase catalytic hydrodechlorination.展开更多
The human papillomavirus (HPV) is a leading cause of infectious cancers, leading to a growing global interest on the profiling of HPV-related cancers. Therefore, the aim of the study was to determine the retrospective...The human papillomavirus (HPV) is a leading cause of infectious cancers, leading to a growing global interest on the profiling of HPV-related cancers. Therefore, the aim of the study was to determine the retrospective epidemiological profile of HPV-related cancer in the United Arab Emirates (UAE). The incidence profiling of HPV-related cancers in males and females of UAE of all ages ranged from a minimum of 0.6% to a maximum of 4.5% for testes cancer and colon cancer respectively in males;whilst in females it ranged from a minimum of 1.0% and a maximum of 34% for Hodgkin lymphoma, kidney, bladder, liver and pancreas cancer and breast cancer, respectively. The incidence profiling of HPV-related cancers in males and females of ages 15 - 44 years old ranged from a minimum of 0.1% to a maximum of 11.2% for pancreas cancer, and colon and rectum cancer respectively in males, whilst in females it ranged from a minimum of 0.1% and a maximum of 18% for pancreas and breast cancer, respectively. The mortality profiling of HPV-related cancers in males and females of all ages in the UAE ranged from a minimum of 0.1% for Hodgkin lymphoma and testicular cancer to a maximum of 4.5% for colon and rectum cancer respectively in males, whilst in females it ranged from a minimum of 0.2% and a maximum of 4.5% for pancreas and breast cancer, respectively. The mortality profiling of HPV-related cancers mortality in males and females of ages 15 - 44 years old in the UAE ranged from a minimum of 0.2% to a maximum of 4.3% for testicular cancer and colon cancer respectively in males, whilst in females it ranged from a minimum of 0.2% and a maximum of 7.2% for bladder and breast cancer respectively. In conclusion, the profiling of HPV-related cancers in UAE for both males and females of all ages is similar to that reported for other parts of the world.展开更多
AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of...AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered.展开更多
Dispersing metals from nanoparticles into clusters or single atoms often exhibits unique properties such as the inhibition of structure-sensitive side reactions.Here,we reported the use of ion exchange(IE)methods and ...Dispersing metals from nanoparticles into clusters or single atoms often exhibits unique properties such as the inhibition of structure-sensitive side reactions.Here,we reported the use of ion exchange(IE)methods and direct hydrogen reduction to achieve high dispersion of Co species on zincosilicate.The obtained 2Co/Zn-4-IE catalyst achieved an initial propane conversion of 41.4%at a temperature of 550℃in a 25%propane and 75%nitrogen atmosphere for propane dehydrogenation.Visualization of the presence of Co species within specific rings(alpha-α,beta-βand delta-δ)was obtained by aberration-corrected scanning transmission electron microscopy.A series of Fourier transform infrared spectra confirmed the anchoring of Co by specific hydroxyl groups in zincosilicate and the specific coordination environment of Co and its presence in the rings essentially as a single site.The framework Zn for the modulation of the microenvironment and the presence of Co species as Lewis acid active sites(Co-O4)was also supported by density functional theory calculations.展开更多
Objective: This study aimed to evaluate the immediate psychological effects of coordination exercises on women in Japan. Methods: The subjects were 17 adult women (height, 160.1 ± 5.1 cm;weight, 54.3 ± 10.5 ...Objective: This study aimed to evaluate the immediate psychological effects of coordination exercises on women in Japan. Methods: The subjects were 17 adult women (height, 160.1 ± 5.1 cm;weight, 54.3 ± 10.5 kg;age, 57.8 ± 8.3 years) living in the community and attending a fitness club. The subjects performed a coordination exercise called Life Kinetik®. The subjects responded to the Two-Dimensional Mood Scale–Short Term before and after performing 30 minutes of Life Kinetik®. The results were tabulated and four psychological states were calculated (i.e., vitality, stability, pleasure, and arousal). The pre- and post-implementation results were statistically analyzed using a corresponding t-test. Results: Significant differences were found in activation and arousal levels, but not in stability and comfort levels. Conclusion: The coordination exercise, Life Kinetik®, was found to be an exercise program with potential psychological benefits, as it could change women’s psychological condition to active and excited states.展开更多
Biofabrication,also known as bioprinting,has been widely used in the field of biomedicine.The three most important factors in biofabrication are 3D bioprinter,biomaterials to be printed(bioinks),and the printing objec...Biofabrication,also known as bioprinting,has been widely used in the field of biomedicine.The three most important factors in biofabrication are 3D bioprinter,biomaterials to be printed(bioinks),and the printing object(application).This review provides a detailed introduction to the latest research progress in these aspects.In particularly,the bioinks for bioprinting require strict biocompatible requirements.Four typical materials,i.e.metal/alloys,ceramics,polymers,and their composites,were introduced in detail,and their printing process and application scenarios were summarized,respectively.There are many applications of biofabrication in clinical practice.The application of biofabrication in skeletal system,skin and soft tissue,cardiovascular system,digestive system,respiratory system,urinary system,nervous system,plastic surgery and medical aesthetics were briefly introduced.The applications of biofabrication has a wide range of clinical need.Biofabrication is an innovative technology that is expected to further promote the clinical precision treatments.展开更多
基金the National Natural-Science Foundation of China(Grant No.62304137)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012479,2024A1515011737,and 2024A1515010006)+4 种基金the Science and Technology Innovation Commission of Shenzhen(Grant No.JCYJ20220818100206013)RSC Researcher Collaborations Grant(Grant No.C23-2422436283)State Key Laboratory of Radio Frequency Heterogeneous Integration(Independent Scientific Research Program No.2024010)the Project on Frontier and Interdisciplinary Research Assessment,Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2023XXA002)NTUT-SZU Joint Research Program.
文摘In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.
基金supported by the RGC Research Impact Fund(Grant No.R5008-22F).
文摘Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related mortality worldwide1.The primary treatment options for this disease are surgical resection and liver transplantation.Unfortunately,most HCC cases are diagnosed in advanced stages and are inoperable.Even after surgery,the long-term prognosis remains unsatisfactory,because of a high recurrence rate.
基金supported by the RGC Senior Research Fellowship Scheme(Grant No.SRFS2021-5S01)the Hong Kong Research Grants Council(Grant No.PolyU 15307321)+2 种基金Research Institute for Smart Energy(CDAQ),Research Centre for Nanoscience and Nanotechnology(CE2H),Research Centre for Carbon-Strategic Catalysis(CE2L)Miss Clarea Au for the Endowed Professorship in Energy(Grant No.847S)National Natural Science Foundation of China(Grant No.62205277).
文摘The search for photoactive materials that are able to efficiently produce solar fuels is a growing research field to tackle the current energy crisis.Herein,we have prepared two ionic non-noble metallo-supramolecular polymers Se-MTpy(M=Co or Ni),and constructed their composites with single-walled carbon nanotubes(CNTs)via electrostatic attraction andπ-πinteractions for efficient and stable photocatalytic hydrogen evolution.In the photocatalytic system,the cationic Se-MTpy as host and anionic CNTs as vip are assembled into a binary composite,which exhibits superior photocatalytic activity under visible light irradiation(>420 nm).The optimized CNT@Se-CoTpy composite,containing 1.2 wt%metal loading,achieves 7 times higher hydrogen evolution rate(2.47 mmol g^(-1)h^(-1))than bare Se-CoTpy(0.35 mmol g^(-1)h^(-1)).This is attributed to the constructive formation of junctions between polymer and CNTs,facilitating interfacial charge transfer and transport for efficient proton reduction.The composite system also shows high photostability after continuous irradiation for~30 h.The combination of experimental and theoretical analysis demonstrates the higher activity for reducing H_(2)O to H_(2)of Se-CoTpy than Se-NiTpy.The feasible interfacial architecture proposed in this study represents an effective approach to achieve high photocatalytic performance.
基金supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project(No.2023ZD0504600)the National Science Foundation of Guangdong Province(No.2023B1515020082)。
文摘Background Predicting in-hospital mortality in elderly patients with dilated cardiomyopathy(DCM)is critical for improving clinical management.This study investigated the prognostic significance of mitral valve regurgitant area(MVRA)as a predictor of in-hospital mortality.Methods A total of 813 elderly patients(age≥60 years)diag-nosed with DCM were included in this retrospective study,with admissions spanning from January 2010 to Decem-ber 2019.Univariate and multivariate Cox regression analyses were conducted to assess the association between MVRA and in-hospital mortality.Receiver operating characteristic(ROC)curve and Kaplan-Meier survival analy-ses were employed to assess the predictive performance of MVRA and to compare cumulative survival rates be-tween groups,respectively.Results MVRA was significantly associated with in-hospital mortality in both univar-iate and multivariate analyses(HR:1.119,95%CI:1.028-1.218,P=0.009).ROC curve analysis demonstrated good prognostic performance for MVRA[area under curve(AUC):0.714].Kaplan-Meier analysis revealed that patients with high MVRA(HMVRA)had significantly worse in-hospital survival outcomes(log-rank χ2=12.628,P<0.001).Conclusions An increase in MVRA is significantly associated with higher in-hospital mortality in elderly DCM patients,with an MVRA exceeding 7 cm2 indicating a notably increased mortality rate.MVRA serves as a simple and effective parameter for risk assessment and treatment monitoring in DCM patients.
基金financial supports from the National Key Research and Development Program of China(Nos.2022YFB3504100 and 2021YFB3500600)National Natural Science Foundation of Jiangsu Province(No.BK20240567)+6 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJB610012)Key R&D Program of Jiangsu Province(No.BE2022142)Jiangsu International Cooperation Project(No.BZ2021018)Nanjing Science and Technology Top Experts Gathering Plan,Cooperation Foundation for the Chunhui Plan Program of Ministry of Education of China(No.202200554)Open Project Program of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science(No.M2024-7),MOEOpen Project Program of Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation(No.PSMER2023008)the Open Foundation of State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control(No.SEMPC2023004)
文摘Rare earth-based functional nanomaterials have wide applications in catalytic CO_(2)reduction reaction(CO_(2)RR)due to their impressive performance.In particular,the superior oxygen storage and release ability of Ce^(4+)/Ce^(3+)reversible pairs,the high coordination number and rich coordination geometry of lanthanide(La)metal ions and the unique stereoselectivity of samarium(Sm)reagents have aroused more and more interest among scientists.To enhance the catalytic activity of Ce,La,Sm(CLS)-based catalysts,recent developments of various modification strategies have been performed to promote the charge transfer and activation of CO_(2).This review constructively discussed the synthesis of modified CLS-based materials and the corresponding applications in thermal catalytic CO_(2)RR,photocatalytic CO_(2)RR,and electrocatalytic CO_(2)RR.Finally,the current difficulties of these materials and further research on the modification of rare earth-based catalysts,as well as the potential future development have been identified.
基金supported by the National Natural Science Foundation of China(Nos.21971080,22171098)supported by Chengdu Guibao Science&Technology Co.,Ltd.This work was also supported by the 111 Project(No.B17019)。
文摘The first-ever synthesis of the unknown furo[2,3:4,5]pyrimido[1,2-b]indazole skeleton was demonstrated based on the undiscovered tetra-functionalization of enaminones,with simple substrates and reaction conditions.The key to realizing this process lies in the multiple trapping of the in situ generated ketenimine cation by the 3-aminoindazole,which results in the formation of four new chemical bonds and two new rings in one pot.Moreover,the products of this new reaction were found to exhibit aggregationinduced emission(AIE)without modification.
基金supported by the National Natural Science Foundation of China(22178361,22378402,52302310)the International Partnership Project of CAS(039GJHZ2022029GC)+3 种基金the National Key R&D Program of China(2020YFA0710200)the Foundation of the Innovation Academy for Green Manufacture Institute,Chinese Academy of Sciences(IAGM2022D07)QinChuangYuan Cites High-level Innovation and Entrepreneurship Talent Programs(QCYRCXM-2022-335)the Open Project Program of Anhui Province International Research Center on Advanced Building Materials(JZCL2303KF).
文摘Compared to aqueous-phase electrocatalytic nitrogen reduction reaction(NRR),lithium-mediated NRR(Li-NRR)theoretically enhances the intrinsic activity of NH3 production through spontaneous exothermic reactions between Li and N_(2).However,the in-situ generated solid electrolyte interphase(SEI)during the reaction slows down the Li^(+)transport and nucleation kinetics,which further hinders the subsequent activation and protonation processes.Herein,a sophisticated amorphous-crystalline heterostructured SEI of Zn-LiF is formed by additive engineering.The concerted electron interplay between amorphous and crystalline domains is prone to generate lithiophobic Zn and lithiophilic LiF sites,where lithiophobic Zn accelerates Li^(+)diffusion within the SEI and avoids high concentration polarization,and lithiophilic LiF ensures homogeneous nucleation of diffused Li^(+)and its participation in subsequent reactions.Therefore,compared to conventional SEI,a more than 8-fold performance improvement is achieved in the additive-engineered heterogeneous lithiophobic-lithiophilic SEI,which exhibits a high NH_(3)yield rate of 11.58 nmol s^(−1)cm^(−2)and a Faradaic efficiency of 32.97%.Thus,exploiting the synergistic effects in heterogeneous lithiophobic-lithiophilic structures to achieve functional complementarity between different components opens a new avenue toward high-performance Li-NRR.
文摘Dispersing metals from nanoparticles to clusters is often achieved using ligand protection methods,which exhibit unique properties such as suppressing structure-sensitive side reactions.However,this method is limited by the use of different metal precursor salts corresponding to different ligands.An alternative approach,the ion exchange(IE)method,can overcome this limitation to some extent.Nevertheless,there is still an urgent need to address the stabilization of metals(especially precious metals)by using IE method.Here,we reported a Pt cluster catalyst prepared mainly by anchoring Pt atoms via O located near the framework Zn in zincosilicate zeolites and riveted by zeolite surface rings after reduction(reduced Pt/Zn-3-IE).The catalyst can achieve an initial propane conversion of 26%in a pure propane atmosphere at 550℃and shows little deactivation even after 7.5 d of operation.Moreover,the alteration of catalyst by the introduction of framework Zn was also highlighted and interpreted.
基金supported by the Research Grants Council(16310419,16309418,and 16304821)the Innovation and Technology Commission(Grant No.ITC-CNERC14EG03)of the Hong Kong Special Administrative Region+4 种基金the Hong Kong Branch of National Precious Metals Material Engineering Research Centre,City University of Hong Kongthe Strategic Hiring Scheme of The Hong Kong Polytechnic University(P0047728)GuangDong Basic and Applied Basic Research Foundation(2023A1515110259)National Natural Science Foundation of China(22405228)Guangzhou Science and Technology Bureau(2024A03J0609)。
文摘Cu-based metal-organic frameworks(Cu-MOFs)electrocatalysts are promising for CO_(2)reduction reactions(CO_(2)RR)to produce valuable C_(2+)products.However,designing suitable active sites in Cu-MOFs remains challenging due to their inherent structural instability during CO_(2)RR.Here we propose a synergistic strategy through thermal annealing and electrochemicalactivation process for in-situ reconstruction of the pre-designed Cu-MOFs to produce abundant partially oxidized Cu(Cu^(δ+))active species.The optimized MOF-derived Cu^(δ+)electrocatalyst demonstrates a highly selective production of C_(2+)products,with the Faradaic Efficiency(FE)of 78±2%and a partial current density of-46 m A cm-2at-1.06 VRHEin a standard H-type cell.Our findings reveal that the optimized Cu^(δ+)-rich surface remains stable during electrolysis and enhances surface charge transfer,leading to an increase in the concentration of*CO intermediates,thereby highly selectively producing C_(2+)compounds.This study advances the controllable formation of MOF-derived Cu^(δ+)-rich surfaces and strengthens the understanding of their catalytic role in CO_(2)RR for C_(2+)products.
基金supported by the National Natural Science Foundation of China(Nos.52325504,52235007,and T2121004).
文摘As surgical procedures transition from conventional resection to advanced tissue-regeneration technologies,human disease therapy has witnessed a great leap forward.In particular,three-dimensional(3D)bioprinting stands as a landmark in this setting,by promising the precise integration of biomaterials,cells,and bioactive molecules,thus opening up a novel avenue for tissue/organ regeneration.Curated by the editorial board of Bio-Design and Manufacturing,this review brings together a cohort of leading young scientists in China to dissect the core functionalities and evolutionary trajectory of 3D bioprinting,by elucidating the intricate challenges encountered in the manufacturing of transplantable organs.We further delve into the translational pathway from scientific research to clinical application,emphasizing the imperativeness of establishing a regulatory framework and rigorously enforcing quality-control measures.Finally,this review outlines the strategic landscape and innovative achievements of China in this field and provides a comprehensive roadmap for researchers worldwide to propel this field collectively to even greater heights.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金supported by the National Nature Science Foundation of China(22209211 and 52172241)Hong Kong Research Grants Council(CityU 11315622)+1 种基金the research funds from South-Central Minzu University(YZZ22001)the National Key R&D Program of China(2021YFA1501101).
文摘With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.
基金financial support from the RGC Senior Research Fellowship Scheme(SRFS2122-5S04)General Research Fund(15304322)+1 种基金RGC Postdoctoral Fellowship(PDFS2324-5S10)State Key Laboratory for Ultraprecision Machining Technology(1-BBXR).
文摘The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning techniques,transfer printing emerges as one of the most efficient,cost-effective,and scalable methods.It boasts the ability for high-throughput fabrication of 0–3D micro-and nano-structures on flexible substrates,working in tandem with traditional lithography methods.This review highlights the critical issue of transfer printing:the flawless transfer of devices during the pick-up and printing process.We encapsulate recent advancements in numerous transfer printing techniques,with a particular emphasis on strategies to control adhesion forces at the substrate/device/stamp interfaces.These strategies are employed to meet the requirements of competing fractures for successful pick-up and print processes.The mechanism,advantages,disadvantages,and typical applications of each transfer printing technique will be thoroughly discussed.The conclusion section provides design guidelines and probes potential directions for future advancements.
基金financially supported by the National Natural Science Foundation of China(Nos.21976086 and 22002059)。
文摘Monochloroacetic acid(MCAA)is identified as a highly carcinogenic disinfection by-product in chlorinated drinking water.In this study,a series of CeO_(2)-supported Pd catalysts(Pd/MCeO_(2))were synthesized through one-step calcination of Pd-loaded Ce-UiO-66-BDC(CeMOF),and the liquid-phase catalytic hydrodechlorination of MCA A was explored using these catalysts.For comparison,Pd/CeO_(2)catalysts were additionally synthesized using the conventional impregnation method.The characterization results reveal that the catalysts exhibit strong metal-support interaction,leading to high Pd dispersion and Pd^(n+)content.Additionally,the calcination temperature significantly influences catalytic performance,with the catalyst calcined at 500℃(Pd/MCeO_(2)-500)demonstrating the highest catalytic activity and achieving complete dechlorination of MCA A within 50 min.Furthermore,it is found that the catalytic MCAA hydrodechlorination using the catalysts adheres to the Langmuir-Hinshelwood model.Accordingly,low reaction pH is favorable for the catalytic hydrodechlorination of MCAA,enhancing MCAA adsorption on the catalyst surface due to the electrostatic interaction between MCAA and the catalyst surface.Theoretical results suggest that the presence of Pd^(n+)efficiently facilitates MCAA adsorption and C-Cl cleavage,thus significantly enhancing the liquid-phase catalytic hydrodechlorination.
文摘The human papillomavirus (HPV) is a leading cause of infectious cancers, leading to a growing global interest on the profiling of HPV-related cancers. Therefore, the aim of the study was to determine the retrospective epidemiological profile of HPV-related cancer in the United Arab Emirates (UAE). The incidence profiling of HPV-related cancers in males and females of UAE of all ages ranged from a minimum of 0.6% to a maximum of 4.5% for testes cancer and colon cancer respectively in males;whilst in females it ranged from a minimum of 1.0% and a maximum of 34% for Hodgkin lymphoma, kidney, bladder, liver and pancreas cancer and breast cancer, respectively. The incidence profiling of HPV-related cancers in males and females of ages 15 - 44 years old ranged from a minimum of 0.1% to a maximum of 11.2% for pancreas cancer, and colon and rectum cancer respectively in males, whilst in females it ranged from a minimum of 0.1% and a maximum of 18% for pancreas and breast cancer, respectively. The mortality profiling of HPV-related cancers in males and females of all ages in the UAE ranged from a minimum of 0.1% for Hodgkin lymphoma and testicular cancer to a maximum of 4.5% for colon and rectum cancer respectively in males, whilst in females it ranged from a minimum of 0.2% and a maximum of 4.5% for pancreas and breast cancer, respectively. The mortality profiling of HPV-related cancers mortality in males and females of ages 15 - 44 years old in the UAE ranged from a minimum of 0.2% to a maximum of 4.3% for testicular cancer and colon cancer respectively in males, whilst in females it ranged from a minimum of 0.2% and a maximum of 7.2% for bladder and breast cancer respectively. In conclusion, the profiling of HPV-related cancers in UAE for both males and females of all ages is similar to that reported for other parts of the world.
基金Supported by grants from the Zhejiang Medicine and Health Science and Technology Project(No.2018KY748)Ningbo Natural Science Foundation(No.2019A610352)+3 种基金Ningbo Major Scientific and Technological Research and“Unveiling and Commanding”Project(No.2021Z054)Chongqing Science&Technology Commission(No.CSTB2022NSCQ-MSX1413)Ningbo Clinical Research Center for Ophthalmology(No.2022L003)Ningbo Key Laboratory for Neuroretinopathy Medical Research,and the Project of NINGBO Leading Medical&Health Discipline(No.2016-S05).
文摘AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered.
文摘Dispersing metals from nanoparticles into clusters or single atoms often exhibits unique properties such as the inhibition of structure-sensitive side reactions.Here,we reported the use of ion exchange(IE)methods and direct hydrogen reduction to achieve high dispersion of Co species on zincosilicate.The obtained 2Co/Zn-4-IE catalyst achieved an initial propane conversion of 41.4%at a temperature of 550℃in a 25%propane and 75%nitrogen atmosphere for propane dehydrogenation.Visualization of the presence of Co species within specific rings(alpha-α,beta-βand delta-δ)was obtained by aberration-corrected scanning transmission electron microscopy.A series of Fourier transform infrared spectra confirmed the anchoring of Co by specific hydroxyl groups in zincosilicate and the specific coordination environment of Co and its presence in the rings essentially as a single site.The framework Zn for the modulation of the microenvironment and the presence of Co species as Lewis acid active sites(Co-O4)was also supported by density functional theory calculations.
文摘Objective: This study aimed to evaluate the immediate psychological effects of coordination exercises on women in Japan. Methods: The subjects were 17 adult women (height, 160.1 ± 5.1 cm;weight, 54.3 ± 10.5 kg;age, 57.8 ± 8.3 years) living in the community and attending a fitness club. The subjects performed a coordination exercise called Life Kinetik®. The subjects responded to the Two-Dimensional Mood Scale–Short Term before and after performing 30 minutes of Life Kinetik®. The results were tabulated and four psychological states were calculated (i.e., vitality, stability, pleasure, and arousal). The pre- and post-implementation results were statistically analyzed using a corresponding t-test. Results: Significant differences were found in activation and arousal levels, but not in stability and comfort levels. Conclusion: The coordination exercise, Life Kinetik®, was found to be an exercise program with potential psychological benefits, as it could change women’s psychological condition to active and excited states.
基金supported by National Key Research and Development Program of China(Grant Nos.2023YFC2411300,2023YFB4605800)National Natural Science Foundation of China(Grant No.32471474)+2 种基金Sichuan Science and Technology Program(Grant Nos.2024YFHZ0125,2022NSFSC1405)China Postdoctoral Science Foundation(Grant No.2022M722268)Research and Develop Program,West China Hospital of Stomatology Sichuan University(Grant No.RD-03-202406).
文摘Biofabrication,also known as bioprinting,has been widely used in the field of biomedicine.The three most important factors in biofabrication are 3D bioprinter,biomaterials to be printed(bioinks),and the printing object(application).This review provides a detailed introduction to the latest research progress in these aspects.In particularly,the bioinks for bioprinting require strict biocompatible requirements.Four typical materials,i.e.metal/alloys,ceramics,polymers,and their composites,were introduced in detail,and their printing process and application scenarios were summarized,respectively.There are many applications of biofabrication in clinical practice.The application of biofabrication in skeletal system,skin and soft tissue,cardiovascular system,digestive system,respiratory system,urinary system,nervous system,plastic surgery and medical aesthetics were briefly introduced.The applications of biofabrication has a wide range of clinical need.Biofabrication is an innovative technology that is expected to further promote the clinical precision treatments.