The effectiveness of rock bolting in ground control has been extensively investigated,mainly for resin based systems.Alternative coupling materials are needed to have good mechanical performance and to reduce the econ...The effectiveness of rock bolting in ground control has been extensively investigated,mainly for resin based systems.Alternative coupling materials are needed to have good mechanical performance and to reduce the economic impact.This study proposed a new bolting system exploiting steel particles as coupling material.The applicability of this system was assessed by laboratory and field pullout tests,assisted by digital imaging correlation(DIC),infrared thermography(IRT)and acoustic emission(AE).The results indicated that,for a 20 mm diameter bolt,the suitable steel particle size and corresponding inner diameter of borehole were 1.4 and 28 mm,respectively.For bolts installed in steel tubes,the particles improved the loading capacity compared to the resin bonded ones.Additional pullout tests on cement blocks indicated that steel particles can be effective for hard rock,whilst resin was a better choice for bolting of soft rock.Similar understanding was obtained by pullout tests in engineering fields,which demonstrated that the steel particles coupled bolts can provide favorable effects in hard rock mass,while the effects were negligible when installed in extremely soft coal mass.The wide set of multi-technique measurements helped to understand the mechanisms involved in the performance of the bolting system with coupling steel particles.展开更多
The bending strength of carbon?fiber/thermoplastic epoxy composites?(CF/TP-EP Compo.)?had?bi-linear increasewith increase of weight-average molecular weight (Mw) of matrix. The transition in the bending strength appea...The bending strength of carbon?fiber/thermoplastic epoxy composites?(CF/TP-EP Compo.)?had?bi-linear increasewith increase of weight-average molecular weight (Mw) of matrix. The transition in the bending strength appeared at around 55k of Mw (“k”?means 103). SEM observation of fractured surface of CF/TP-EP Compo. showed that the fracture mode changed from interfacial failure to fiber breakage dominated failure. The smooth surface of carbon fibers appeared at lower Mw than 55k while some resin remained on the fibers indicating good adhesion between carbon fiber and matrix at higher Mw than 55k. The interfacial shear strength between carbon fiber and matrix bi-linearly increased with an increase of Mw similarly to the bending strength of the composite, measured by the micro droplet test. The dynamic loss tanδ?of the matrix measured at 2?Hz also showed a bi-linear relationship with respect to Mw having a knee point at Mw = 55k. The connection probability of two cracks introduced on?each side of specimens also confirmed that the interfacial strength between carbon fiber and matrix is the key for the mechanical performance of CF/TP-EP Compo. in bending.展开更多
基金The authors would like to acknowledge the financial support of the State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology(No.SICGM202208)China Scholarship Council Grant(CSC#202006425019)Jinbo Hua from Gubei Coal Mine,Cheng-cheng Hu and Guoxiong Hou from Qingdong Coal Mine are acknowledged for their contribution to the field tests.
文摘The effectiveness of rock bolting in ground control has been extensively investigated,mainly for resin based systems.Alternative coupling materials are needed to have good mechanical performance and to reduce the economic impact.This study proposed a new bolting system exploiting steel particles as coupling material.The applicability of this system was assessed by laboratory and field pullout tests,assisted by digital imaging correlation(DIC),infrared thermography(IRT)and acoustic emission(AE).The results indicated that,for a 20 mm diameter bolt,the suitable steel particle size and corresponding inner diameter of borehole were 1.4 and 28 mm,respectively.For bolts installed in steel tubes,the particles improved the loading capacity compared to the resin bonded ones.Additional pullout tests on cement blocks indicated that steel particles can be effective for hard rock,whilst resin was a better choice for bolting of soft rock.Similar understanding was obtained by pullout tests in engineering fields,which demonstrated that the steel particles coupled bolts can provide favorable effects in hard rock mass,while the effects were negligible when installed in extremely soft coal mass.The wide set of multi-technique measurements helped to understand the mechanisms involved in the performance of the bolting system with coupling steel particles.
文摘The bending strength of carbon?fiber/thermoplastic epoxy composites?(CF/TP-EP Compo.)?had?bi-linear increasewith increase of weight-average molecular weight (Mw) of matrix. The transition in the bending strength appeared at around 55k of Mw (“k”?means 103). SEM observation of fractured surface of CF/TP-EP Compo. showed that the fracture mode changed from interfacial failure to fiber breakage dominated failure. The smooth surface of carbon fibers appeared at lower Mw than 55k while some resin remained on the fibers indicating good adhesion between carbon fiber and matrix at higher Mw than 55k. The interfacial shear strength between carbon fiber and matrix bi-linearly increased with an increase of Mw similarly to the bending strength of the composite, measured by the micro droplet test. The dynamic loss tanδ?of the matrix measured at 2?Hz also showed a bi-linear relationship with respect to Mw having a knee point at Mw = 55k. The connection probability of two cracks introduced on?each side of specimens also confirmed that the interfacial strength between carbon fiber and matrix is the key for the mechanical performance of CF/TP-EP Compo. in bending.