期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Curriculum Development for FAIR Data Stewardship
1
作者 Francisca Oladipo Sakinat Folorunso +2 位作者 Ezekiel Ogundepo Obinna Osigwe Akinyinka Tosin Akindele 《Data Intelligence》 EI 2022年第4期991-1012,1033,共23页
The FAIR Guidelines attempts to make digital data Findable, Accessible, Interoperable, and Reusable(FAIR). To prepare FAIR data, a new data science discipline known as data stewardship is emerging and, as the FAIR Gui... The FAIR Guidelines attempts to make digital data Findable, Accessible, Interoperable, and Reusable(FAIR). To prepare FAIR data, a new data science discipline known as data stewardship is emerging and, as the FAIR Guidelines gain more acceptance, an increase in the demand for data stewards is expected. Consequently, there is a need to develop curricula to foster professional skills in data stewardship through effective knowledge communication. There have been a number of initiatives aimed at bridging the gap in FAIR data management training through both formal and informal programmes. This article describes the experience of developing a digital initiative for FAIR data management training under the Digital Innovations and Skills Hub(DISH) project. The FAIR Data Management course offers 6 short on-demand certificate modules over 12 weeks. The modules are divided into two sets: FAIR data and data science. The core subjects cover elementary topics in data science, regulatory frameworks, FAIR data management, intermediate to advanced topics in FAIR Data Point installation, and FAIR data in the management of healthcare and semantic data. Each week, participants are required to devote 7–8 hours of self-study to the modules, based on the resources provided. Once they have satisfied all requirements, students are certified as FAIR data scientists and qualified to serve as both FAIR data stewards and analysts. It is expected that in-depth and focused curricula development with diverse participants will build a core of FAIR data scientists for Data Competence Centres and encourage the rapid adoption of the FAIR Guidelines for research and development. 展开更多
关键词 Data steward Data science FAIR Guidelines FAIR Digital technology FDP installation FAIR Data Trains Semantic web Personal Health Train
原文传递
Expanding Non-Patient COVID-19 Data: Towards the FAIRification of Migrants' Data in Tunisia, Libya and Niger
2
作者 Mariem Ghardallou Morgane Wirtz +5 位作者 Sakinat Folorunso Zohra Touati Ezekiel Ogundepo Klara Smits Ali Mtiraoui Mirjam van Reisen 《Data Intelligence》 EI 2022年第4期955-970,1034,1038,1044,1047,1054,共21页
This article describes the FAIRification process(which involves making data Findable, Accessible, Interoperable and Reusable—or FAIR—for both machines and humans) for data related to the impact of COVID-19 on migran... This article describes the FAIRification process(which involves making data Findable, Accessible, Interoperable and Reusable—or FAIR—for both machines and humans) for data related to the impact of COVID-19 on migrants, refugees and asylum seekers in Tunisia, Libya and Niger, according to the scheme adopted by GO FAIR. This process was divided into three phases: pre-FAIRification, FAIRification and postFAIRification. Each phase consisted of seven steps. In the first phase, 118 in-depth interviews and 565 press articles and research reports were collected by students and researchers at the University of Sousse in Tunisia and researchers in Niger. These interviews, articles and reports constitute the dataset for this research. In the second phase, the data were sorted and converted into a machine actionable format and published on a FAIR Data Point hosted at the University of Sousse. In the third phase, an assessment of the implementation of the FAIR Guidelines was undertaken. Certain barriers and challenges were faced in this process and solutions were found. For FAIR data curation, certain changes need to be made to the technical process. People need to be convinced to make these changes and that the implementation of FAIR will generate a long-term return on investment. Although the implementation of FAIR Guidelines is not straightforward, making our resources FAIR is essential to achieving better science together. 展开更多
关键词 FAIRification process FAIR Guidelines FAIR data Tunisia NIGER Libya COVID MIGRANTS VODAN-Africa
原文传递
FAIR Machine Learning Model Pipeline Implementation of COVID-19 Data
3
作者 Sakinat Folorunso Ezekiel Ogundepo +4 位作者 Mariam Basajja Joseph Awotunde Abdullahi Kawu Francisca Oladipo Abdullahi Ibrahim 《Data Intelligence》 EI 2022年第4期971-990,1036,共21页
Research and development are gradually becoming data-driven and the implementation of the FAIR Guidelines(that data should be Findable, Accessible, Interoperable, and Reusable) for scientific data administration and s... Research and development are gradually becoming data-driven and the implementation of the FAIR Guidelines(that data should be Findable, Accessible, Interoperable, and Reusable) for scientific data administration and stewardship has the potential to remarkably enhance the framework for the reuse of research data. In this way, FAIR is aiding digital transformation. The ‘FAIRification’ of data increases the interoperability and(re)usability of data, so that new and robust analytical tools, such as machine learning(ML) models, can access the data to deduce meaningful insights, extract actionable information, and identify hidden patterns. This article aims to build a FAIR ML model pipeline using the generic FAIRification workflow to make the whole ML analytics process FAIR. Accordingly, FAIR input data was modelled using a FAIR ML model. The output data from the FAIR ML model was also made FAIR. For this, a hybrid hierarchical k-means (HHK) clustering ML algorithm was applied to group the data into homogeneous subgroups and ascertain the underlying structure of the data using a Nigerian-based FAIR dataset that contains data on economic factors, healthcare facilities, and coronavirus occurrences in all the 36 states of Nigeria. The model showed that research data and the ML pipeline can be FAIRified, shared, and reused by following the proposed FAIRification workflow and implementing technical architecture. 展开更多
关键词 FAIRification Semantic data model Cluster analysis FAIR data METADATA Machine learning model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部