期刊文献+
共找到384篇文章
< 1 2 20 >
每页显示 20 50 100
Detecting the Lunar Wrinkle Ridges Through Deep Learning Based on DEM and Aspect Data
1
作者 Xin Lu Jiacheng Sun +2 位作者 Gaofeng Shu Jianhui Zhao Ning Li 《Research in Astronomy and Astrophysics》 2025年第8期167-179,共13页
Lunar wrinkle ridges are an important stress geological structure on the Moon, which reflect the stress state and geological activity on the Moon. They provide important insights into the evolution of the Moon and are... Lunar wrinkle ridges are an important stress geological structure on the Moon, which reflect the stress state and geological activity on the Moon. They provide important insights into the evolution of the Moon and are key factors influencing future lunar activity, such as the choice of landing sites. However, automatic extraction of lunar wrinkle ridges is a challenging task due to their complex morphology and ambiguous features. Traditional manual extraction methods are time-consuming and labor-intensive. To achieve automated and detailed detection of lunar wrinkle ridges, we have constructed a lunar wrinkle ridge data set, incorporating previously unused aspect data to provide edge information, and proposed a Dual-Branch Ridge Detection Network(DBR-Net) based on deep learning technology. This method employs a dual-branch architecture and an Attention Complementary Feature Fusion module to address the issue of insufficient lunar wrinkle ridge features. Through comparisons with the results of various deep learning approaches, it is demonstrated that the proposed method exhibits superior detection performance. Furthermore, the trained model was applied to lunar mare regions, generating a distribution map of lunar mare wrinkle ridges;a significant linear relationship between the length and area of the lunar wrinkle ridges was obtained through statistical analysis, and six previously unrecorded potential lunar wrinkle ridges were detected. The proposed method upgrades the automated extraction of lunar wrinkle ridges to a pixel-level precision and verifies the effectiveness of DBR-Net in lunar wrinkle ridge detection. 展开更多
关键词 MOON methods:data analysis planets and satellites:surfaces techniques:image processing
在线阅读 下载PDF
Analysis software for upper atmospheric data developed by the IUGONET project and its application to polar science 被引量:2
2
作者 Yoshimasa Tanaka Atsuki Shinbori +9 位作者 Tomoaki Hori Yukinobu Koyama Shuji Abe No-rio Umemura Yuka Sato Manabu Yagi Satoru UeNo Akiyo Yatagai Yasunobu Ogawa Yoshizumi Miyoshi 《Advances in Polar Science》 2013年第4期231-240,共10页
To comprehensively understand the Arctic and Antarctic upper atmosphere, it is often crucial to analyze various data that are obtained from many regions. Infrastructure that promotes such interdisciplinary studies on ... To comprehensively understand the Arctic and Antarctic upper atmosphere, it is often crucial to analyze various data that are obtained from many regions. Infrastructure that promotes such interdisciplinary studies on the upper atmosphere has been developed by a Japanese inter-university project called the Inter-university Upper atmosphere Global Observation Network (1UGONET). The objective of this paper is to describe the infrastructure and tools developed by IUGONET. We focus on the data analysis software. It is written in Interactive Data Language (IDL) and is a plug-in for the THEMIS Data Analysis Software suite (TDAS), which is a set of IDL libraries used to visualize and analyze satellite- and ground-based data. We present plots of upper atmospheric data provided by IUGONET as examples of applications, and verify the usefulness of the software in the study of polar science. We discuss IUGONET's new and unique developments, i.e., an executable file of TDAS that can run on the IDL Virtual Machine, IDL routines to retrieve metadata from the IUGONET database, and an archive of 3-D simulation data that uses the Common Data Format so that it can easily be used with TDAS. 展开更多
关键词 data analysis software metadata database upper atmosphere ground-based observation polar science interdisciplinary study IUGONET
在线阅读 下载PDF
A Sentiment Analysis Approach to Discover Public Panic: Based on Weibo Covid-19 Data
3
作者 Wanjun Wu 《Social Networking》 2022年第3期33-39,共7页
Background: Weibo is a Twitter-like micro-blog platform in China where people post their real-life events as well as express their feelings in short texts. Since the outbreak of the Covid-19 pandemic, thousands of peo... Background: Weibo is a Twitter-like micro-blog platform in China where people post their real-life events as well as express their feelings in short texts. Since the outbreak of the Covid-19 pandemic, thousands of people have expressed their concerns and worries about the outbreak via Weibo, showing the existence of public panic. Methods: This paper comes up with a sentiment analysis approach to discover public panic. First, we used Octoparse to obtain Weibo posts about the hot topic Covid-19 Pandemic. Second, we break down those sentences into independent words and clean the data by removing stop words. Then, we use the sentiment score function that deals with negative words, adverbs, and sentiment words to get the sentiment score of each Weibo post. Results: We observe the distribution of sentiment scores and get the benchmark to evaluate public panic. Also, we apply the same process to test the mass sentiment under other topics to test the efficiency of the sentiment function, which shows that our function works well. 展开更多
关键词 Sentiment Analysis Data Analysis Covid-19 Micro-Blogdata
在线阅读 下载PDF
Individual tree detection and counting based on high-resolution imagery and the canopy height model data 被引量:1
4
作者 Ye Zhang Moyang Wang +3 位作者 Joseph Mango Liang Xin Chen Meng Xiang Li 《Geo-Spatial Information Science》 CSCD 2024年第6期2162-2178,共17页
Individual Tree Detection-and-Counting(ITDC)is among the important tasks in town areas,and numerous methods are proposed in this direction.Despite their many advantages,still,the proposed methods are inadequate to pro... Individual Tree Detection-and-Counting(ITDC)is among the important tasks in town areas,and numerous methods are proposed in this direction.Despite their many advantages,still,the proposed methods are inadequate to provide robust results because they mostly rely on the direct field investigations.This paper presents a novel approach involving high-resolution imagery and the Canopy-Height-Model(CHM)data to solve the ITDC problem.The new approach is studied in six urban scenes:farmland,woodland,park,industrial land,road and residential areas.First,it identifies tree canopy regions using a deep learning network from high-resolution imagery.It then deploys the CHM-data to detect treetops of the canopy regions using a local maximum algorithm and individual tree canopies using the region growing.Finally,it calculates and describes the number of individual trees and tree canopies.The proposed approach is experimented with the data from Shanghai,China.Our results show that the individual tree detection method had an average overall accuracy of 0.953,with a precision of 0.987 for woodland scene.Meanwhile,the R^(2) value for canopy segmentation in different urban scenes is greater than 0.780 and 0.779 for canopy area and diameter size,respectively.These results confirm that the proposed method is robust enough for urban tree planning and management. 展开更多
关键词 Individual tree detection-and-counting(ITDC) deep learning high-resolution imagery Canopy Height Model data(CHM)
原文传递
A Prediction-Based Multi-Objective VM Consolidation Approach for Cloud Data Centers
5
作者 Xialin Liu Junsheng Wu +1 位作者 Lijun Chen Jiyuan Hu 《Computers, Materials & Continua》 SCIE EI 2024年第7期1601-1631,共31页
Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource... Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource utilization.This paper proposes a prediction-basedmulti-objective VMconsolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value.We use a hybrid model based on Auto-Regressive Integrated Moving Average(ARIMA)and Support Vector Regression(SVR)(HPAS)as a prediction model and consolidate VMs to PMs based on prediction results by HPAS,aiming at minimizing the total EC,performance degradation(PD),migration cost(MC)and resource wastage(RW)simultaneously.Experimental results usingMicrosoft Azure trace show the proposed approach has better prediction accuracy and overcomes the multi-objective consolidation approach without prediction(i.e.,Non-dominated sorting genetic algorithm 2,Nsga2)and the renowned Overload Host Detection(OHD)approaches without prediction,such as Linear Regression(LR),Median Absolute Deviation(MAD)and Inter-Quartile Range(IQR). 展开更多
关键词 VM consolidation PREDICTION multi-objective optimization machine learning
在线阅读 下载PDF
A Multilayer Network Constructed for Herb and Prescription Efficacy Analysis
6
作者 Xindi Huang Liwei Liang +3 位作者 Sakirin Tam Hao Liang Xiong Cai Changsong Ding 《Computer Systems Science & Engineering》 2024年第3期691-704,共14页
Chinese Medicine(CM)has been widely used as an important avenue for disease prevention and treatment in China especially in the form of CM prescriptions combining sets of herbs to address patients’symptoms and syndro... Chinese Medicine(CM)has been widely used as an important avenue for disease prevention and treatment in China especially in the form of CM prescriptions combining sets of herbs to address patients’symptoms and syndromes.However,the selection and compatibility of herbs are complex and abstract due to intrinsic relationships between herbal properties and their overall functions.Network analysis is applied to demonstrate the complex relationships between individual herbal efficacy and the overall function of CM prescriptions.To illustrate their connections and correlations,prescription function(PF),prescription herb(PH),and herbal efficacy(HE)intranetworks are proposed based on CM theory to identify relationships between herbs and prescriptions.These three networks are then connected by PF-PH and PH-HE interlayer networks adopting herb dosage to form a multidimensional heterogeneous network,a Prescription-Herb-Function Network(PHFN).The network is applied to 112 classic prescriptions from Treatise on Exogenous Febrile and Miscellaneous Diseases to illustrate the application of PHFN.The PHFN is constructed including 146 functions in PF intra network,89 herbs in the PH intra network,and 163 herbal efficacies in the HE intra network.The results show that herb pairs with synergistic actions have stronger relevance,such as licorice-cassia twig,licorice-Chinese date,fresh ginger-Chinese date,etc.The integration of dosage to the network helps to indicate the main herbs for cluster analysis and automatic formulation.PHFN also reveals the internal relationships between the functions of prescriptions and composed herbal efficacies. 展开更多
关键词 Chinese medicine HERB FORMULA network analysis herb dosage
在线阅读 下载PDF
A Non-Parametric Scheme for Identifying Data Characteristic Based on Curve Similarity Matching
7
作者 Quanbo Ge Yang Cheng +3 位作者 Hong Li Ziyi Ye Yi Zhu Gang Yao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1424-1437,共14页
For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the... For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment. 展开更多
关键词 Curve similarity matching Gaussian-like noise non-parametric scheme parzen window.
在线阅读 下载PDF
Qualitative Analysis of a Diffusive Predator-prey Model with Nonlcoal Fear Effect
8
作者 Shen Zhongyuan Zhang Xuebing Li Shunjie 《数学理论与应用》 2024年第3期67-82,共16页
In this paper,we establish a delayed predator-prey model with nonlocal fear effect.Firstly,the existence,uniqueness,and persistence of solutions of the model are studied.Then,the local stability,Turing bifurcation,and... In this paper,we establish a delayed predator-prey model with nonlocal fear effect.Firstly,the existence,uniqueness,and persistence of solutions of the model are studied.Then,the local stability,Turing bifurcation,and Hopf bifurcation of the constant equilibrium state are analyzed by examining the characteristic equation.The global asymptotic stability of the positive equilibrium point is investigated using the Lyapunov function method.Finally,the correctness of the theoretical analysis results is verified through numerical simulations. 展开更多
关键词 Delay Nonlocal fear effect Global stability Hopf bifurcation
在线阅读 下载PDF
Estimating China’s poverty reduction efficiency by integrating multi-source geospatial data and deep learning techniques
9
作者 Yao Yao Jianfeng Zhou +7 位作者 Zhenhui Sun Qingfeng Guan Zhiqiang Guo Yin Xu Jinbao Zhang Ye Hong Yuyang Cai Ruoyu Wang 《Geo-Spatial Information Science》 CSCD 2024年第4期1000-1016,共17页
Poverty threatens human development especially for developing countries,so ending poverty has become one of the most important United Nations Sustainable Development Goals(SDGs).This study aims to explore China’s pro... Poverty threatens human development especially for developing countries,so ending poverty has become one of the most important United Nations Sustainable Development Goals(SDGs).This study aims to explore China’s progress in poverty reduction from 2016 to 2019 through time-series multi-source geospatial data and a deep learning model.The poverty reduction efficiency(PRE)is measured by the difference in the out-of-poverty rates(which measures the probability of being not poor)of 2016 and 2019.The study shows that the probability of poverty in all regions of China has shown an overall decreasing trend(PRE=0.264),which indicates that the progress in poverty reduction during this period is significant.The Hu Huanyong Line(Hu Line)shows an uneven geographical pattern of out-of-poverty rate between Southeast and Northwest China.From 2016 to 2019,the centroid of China’s out-of-poverty rate moved 105.786 km to the northeast while the standard deviation ellipse of the out-of-poverty rate moved 3 degrees away from the Hu Line,indicating that the regions with high out-of-poverty rates are more concentrated on the east side of the Hu Line from 2016 to 2019.The results imply that the government’s future poverty reduction policies should pay attention to the infrastructure construction in poor areas and appropriately increase the population density in poor areas.This study fills the gap in the research on poverty reduction under multiple scales and provides useful implications for the government’s poverty reduction policy. 展开更多
关键词 Poverty reduction efficiency(PRE) driving forces multisource big data deep learning random forest(RF)
原文传递
Corrigendum to“Water treatment challenges and solution strategies”[Journal of Environmental Sciences,Volume 146,December 2024,Pages 1-2]
10
作者 Junya Zhang Baiwen Ma +2 位作者 Min Yang An Ding Huijuan Liu 《Journal of Environmental Sciences》 2025年第9期924-924,共1页
The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and... The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and Mathematical Modelling,Ghent University,Belgium”.And affiliation c should be changed to“State Key Laboratory of Urban Water Resource and Environment(SKLUWRE),School of Environment,Harbin Institute of Technology,China”. 展开更多
关键词 data analysis water treatment solution strategies affiliation correction civil environmental engineeringharbin CHALLENGES
原文传递
Local Rate of Convergence in the Functional Limit Theorem for Increments of a Fractional Brownian Motion 被引量:1
11
作者 LIU Yonghong DING Ding ZHOU Xia 《数学进展》 北大核心 2025年第1期197-211,共15页
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104... In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192]. 展开更多
关键词 fractional Brownian motion INCREMENT local functional law of the iterated logarithm large deviation small deviation
原文传递
Potential reduction of global colorectal cancer,1990–2021 被引量:1
12
作者 Zilin Luo Xuesi Dong +10 位作者 Le Wang Yadi Zheng Chenran Wang Jiaxin Xie Xiaolu Chen Liang Zhao Yongjie Xu Wei Cao Fei Wang Lingbin Du Ni Li 《Journal of the National Cancer Center》 2025年第3期313-321,共9页
Objectives Primary prevention targeting modifiable risk factors would reduce the global burden of colorectal cancer,but the quantitative results are uncertain.We aimed to assess the global burden of colorectal cancer ... Objectives Primary prevention targeting modifiable risk factors would reduce the global burden of colorectal cancer,but the quantitative results are uncertain.We aimed to assess the global burden of colorectal cancer attributed to modifiable lifestyle factors and quantify the potential increase in life expectancy resulting from the elimination of these risk factors.Methods Based on the Global Burden of Disease Study 2021,we examined colorectal cancer deaths and disability-adjusted life years attributed to modifiable risk factors(including smoking,diet low in whole grains,diet low in milk,diet high in red meat,diet low in calcium,diet high in processed meat,and diet low in fiber)at the global,regional,and national levels from 1990 to 2021.The abridged period life table method was utilized to quantify the potential gain in life expectancy from eliminating these risk factors.Results Globally in 2021,57.1%of colorectal cancer deaths and 56.4%of disability-adjusted life years were preventable,with rates of 7.55(4.94–9.64)and 174.67(114.54–222.24)per 100,000 population,respectively.The modifiable burden has diminished in the high,high-middle,and low socio-demographic index quintiles and remained steady in the middle one.However,there is a concerning increase in the low-middle one.In 2021,the elimination of global colorectal cancer attributed to modifiable factors would increase the life expectancy for males and females by 0.107 and 0.109 years,respectively.Conclusion Our results quantitatively demonstrate the substantial burden reduction in colorectal cancer and the significant gain in life expectancy that can be achieved by eliminating modifiable lifestyle factors. 展开更多
关键词 Colorectal cancer Modifiable Risk factors Global burden of disease
暂未订购
Prediction of RNA m6A Methylation Sites in Multiple Tissues Based on Dual-branch Residual Network
13
作者 GUO Xiao-Tian GAO Wei +2 位作者 CHEN Dan LI Hui-Min TAN Xue-Wen 《生物化学与生物物理进展》 北大核心 2025年第11期2900-2915,共16页
Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated ... Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated in diverse pathological conditions.Accurate prediction of m6A sites is critical for elucidating their regulatory mechanisms and informing drug development.However,traditional experimental methods are time-consuming and costly.Although various computational approaches have been proposed,challenges remain in feature learning,predictive accuracy,and generalization.Here,we present m6A-PSRA,a dual-branch residual-network-based predictor that fully exploits RNA sequence information to enhance prediction performance and model generalization.Methods m6A-PSRA adopts a parallel dual-branch network architecture to comprehensively extract RNA sequence features via two independent pathways.The first branch applies one-hot encoding to transform the RNA sequence into a numerical matrix while strictly preserving positional information and sequence continuity.This ensures that the biological context conveyed by nucleotide order is retained.A bidirectional long short-term memory network(BiLSTM)then processes the encoded matrix,capturing both forward and backward dependencies between bases to resolve contextual correlations.The second branch employs a k-mer tokenization strategy(k=3),decomposing the sequence into overlapping 3-mer subsequences to capture local sequence patterns.A pre-trained Doc2vec model maps these subsequences into fixeddimensional vectors,reducing feature dimensionality while extracting latent global semantic information via context learning.Both branches integrate residual networks(ResNet)and a self-attention mechanism:ResNet mitigates vanishing gradients through skip connections,preserving feature integrity,while self-attention adaptively assigns weights to focus on sequence regions most relevant to methylation prediction.This synergy enhances both feature learning and generalization capability.Results Across 11 tissues from humans,mice,and rats,m6A-PSRA consistently outperformed existing methods in accuracy(ACC)and area under the curve(AUC),achieving>90%ACC and>95%AUC in every tissue tested,indicating strong cross-species and cross-tissue adaptability.Validation on independent datasets—including three human cell lines(MOLM1,HEK293,A549)and a long-sequence dataset(m6A_IND,1001 nt)—confirmed stable performance across varied biological contexts and sequence lengths.Ablation studies demonstrated that the dual-branch architecture,residual network,and self-attention mechanism each contribute critically to performance,with their combination reducing interference between pathways.Motif analysis revealed an enrichment of m6A sites in guanine(G)and cytosine(C),consistent with known regulatory patterns,supporting the model’s biological plausibility.Conclusion m6A-PSRA effectively captures RNA sequence features,achieving high prediction accuracy and robust generalization across tissues and species,providing an efficient computational tool for m6A methylation site prediction. 展开更多
关键词 N6-methyladenosine site Doc2vec BiLSTM dual-branch residual network self-attention
原文传递
Optimal Receiver Operating Characteristic Curve of Classical Conditional Power under Normal Models
14
作者 ZHANG Ying-Ying 《应用概率统计》 北大核心 2025年第2期277-304,共28页
A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment ... A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP. 展开更多
关键词 area under the curve(AUC) classical conditional power(CCP) go/no go decisions historical and interim data receiver operating characteristic(ROC)curve
在线阅读 下载PDF
A Modified PRP-HS Hybrid Conjugate Gradient Algorithm for Solving Unconstrained Optimization Problems
15
作者 LI Xiangli WANG Zhiling LI Binglan 《应用数学》 北大核心 2025年第2期553-564,共12页
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien... In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient. 展开更多
关键词 Conjugate gradient method Unconstrained optimization Sufficient descent condition Global convergence
在线阅读 下载PDF
Graph distillation with network symmetry
16
作者 Feng Lin Jia-Lin He 《Chinese Physics B》 2025年第4期262-271,共10页
Graph neural networks(GNNs)have demonstrated excellent performance in graph representation learning.However,as the volume of graph data grows,issues related to cost and efficiency become increasingly prominent.Graph d... Graph neural networks(GNNs)have demonstrated excellent performance in graph representation learning.However,as the volume of graph data grows,issues related to cost and efficiency become increasingly prominent.Graph distillation methods address this challenge by extracting a smaller,reduced graph,ensuring that GNNs trained on both the original and reduced graphs show similar performance.Existing methods,however,primarily optimize the feature matrix of the reduced graph and rely on correlation information from GNNs,while neglecting the original graph’s structure and redundant nodes.This often results in a loss of critical information within the reduced graph.To overcome this limitation,we propose a graph distillation method guided by network symmetry.Specifically,we identify symmetric nodes with equivalent neighborhood structures and merge them into“super nodes”,thereby simplifying the network structure,reducing redundant parameter optimization and enhancing training efficiency.At the same time,instead of relying on the original node features,we employ gradient descent to match optimal features that align with the original features,thus improving downstream task performance.Theoretically,our method guarantees that the reduced graph retains the key information present in the original graph.Extensive experiments demonstrate that our approach achieves significant improvements in graph distillation,exhibiting strong generalization capability and outperforming existing graph reduction methods. 展开更多
关键词 graph neural networks graph distillation network symmetry super nodes feature optimization
原文传递
TCMHTI:a Transformer-based herb-target interaction prediction model for Qingfu Juanbi Decoction in rheumatoid arthritis
17
作者 Zhenzhong LIANG Changsong DING 《Digital Chinese Medicine》 2025年第2期206-218,共13页
Objective To predict the potential targets of Qingfu Juanbi Decoction(青附蠲痹汤,QFJBD)in treating rheumatoid arthritis(RA)using an improved Transformer model and investigate the network pharmacological mechanisms und... Objective To predict the potential targets of Qingfu Juanbi Decoction(青附蠲痹汤,QFJBD)in treating rheumatoid arthritis(RA)using an improved Transformer model and investigate the network pharmacological mechanisms underlying QFJBD’s therapeutic effects on RA.Methods First,a traditional Chinese medicine herb-target interaction(TCMHTI)model was constructed to predict herb-target interactions based on Transformer improvement.The per-formance of the TCMHTI model was evaluated against baseline models using three metrics:area under the receiver operating characteristic curve(AUC),precision-recall curve(PRC),and accuracy.Subsequently,a protein-protein interaction(PPI)network was built based on the predicted targets,with core targets identified as the top nine nodes ranked by degree val-ues.Gene Ontology(GO)functional and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were performed using the targets predicted by TCMHTI and the targets identified through network pharmacology method for comparison.Then,the re-sults were compared.Finally,the core targets predicted by TCMHTI were validated through molecular docking and literature review.Results The TCMHTI model achieved an AUC of 0.883,PRC of 0.849,and accuracy of 0.818,predicting 49 potential targets for QFJBD in RA treatment.Nine core targets were identified:tumor necrosis factor(TNF)-α,interleukin(IL)-1β,IL-6,IL-10,IL-17A,cluster of differentia-tion 40(CD40),cytotoxic T-lymphocyte-associated protein 4(CTLA4),IL-4,and signal trans-ducer and activator of transcription 3(STAT3).The enrichment analysis demonstrated that the TCMHTI model predicted 49 targets and enriched more pathways directly associated with RA,whereas classical network pharmacology identified 64 targets but enriched pathways showing weaker relevance to RA.Molecular docking demonstrated that the active molecules in QFJBD exhibit favorable binding energy with RA targets,while literature research further revealed that QFJBD can treat RA through 9 core targets.Conclusion The TCMHTI model demonstrated greater accuracy than traditional network pharmacology methods,suggesting QFJBD exerts therapeutic effects on RA by regulating tar-gets like TNF-α,IL-1β,and IL-6,as well as multiple signaling pathways.This study provides a novel framework for bridging traditional herbal knowledge with precision medicine,offering actionable insights for developing targeted TCM therapies against diseases. 展开更多
关键词 Transformer Qingfu Juanbi Decoction Rheumatoid arthritis Deep learning Network pharmacology
暂未订购
Wideband near-infrared emission from GaScO_(3):Cr^(3+)phosphors with a perovskite structure
18
作者 Chong Li Mengyu Zhang +4 位作者 Chuancheng Zhang Wenzhi Su Yong Zou Shoujun Ding Qingli Zhang 《Chinese Physics B》 2025年第8期707-714,共8页
Cr^(3+)-activated phosphors have attracted significant attention for their tunable emission,spanning narrow-band red to broadband near-infrared(NIR)luminescence,depending on the crystal field environment.Here,we repor... Cr^(3+)-activated phosphors have attracted significant attention for their tunable emission,spanning narrow-band red to broadband near-infrared(NIR)luminescence,depending on the crystal field environment.Here,we report the realization of wideband NIR emission in Cr^(3+)-doped GaScO_(3)(GaScO_(3):Cr^(3+))phosphors with perovskite structure.The phosphors were synthesized by traditional solid-state reaction method.The first-principles calculations were conducted and the results demonstrate that the octahedral[GaO_(6)]sites exhibit relatively weak crystal field strength(Dq/B≈2.2),facilitating efficient spin-allowed transitions of Cr^(3+)from the^(4)T_(2)state to the^(4)A_(2)state.The photoluminescence spectroscopy revealed an exceptionally broad NIR emission band from a range of 700 nm-1200 nm with full width at half maximum(FWHM)of 145 nm under 465-nm excitation.Overall,these results highlight the viability of GaScO_(3):Cr^(3+)as a highly promising material for wideband NIR applications. 展开更多
关键词 GaScO_(3) perovskite phosphors Cr^(3+)-doped near-infrared emission density functional theory
原文传递
Privacy-Preserving Fingerprint Recognition via Federated Adaptive Domain Generalization
19
作者 Yonghang Yan Xin Xie +2 位作者 Hengyi Ren Ying Cao Hongwei Chang 《Computers, Materials & Continua》 2025年第3期5035-5055,共21页
Fingerprint features,as unique and stable biometric identifiers,are crucial for identity verification.However,traditional centralized methods of processing these sensitive data linked to personal identity pose signifi... Fingerprint features,as unique and stable biometric identifiers,are crucial for identity verification.However,traditional centralized methods of processing these sensitive data linked to personal identity pose significant privacy risks,potentially leading to user data leakage.Federated Learning allows multiple clients to collaboratively train and optimize models without sharing raw data,effectively addressing privacy and security concerns.However,variations in fingerprint data due to factors such as region,ethnicity,sensor quality,and environmental conditions result in significant heterogeneity across clients.This heterogeneity adversely impacts the generalization ability of the global model,limiting its performance across diverse distributions.To address these challenges,we propose an Adaptive Federated Fingerprint Recognition algorithm(AFFR)based on Federated Learning.The algorithm incorporates a generalization adjustment mechanism that evaluates the generalization gap between the local models and the global model,adaptively adjusting aggregation weights to mitigate the impact of heterogeneity caused by differences in data quality and feature characteristics.Additionally,a noise mechanism is embedded in client-side training to reduce the risk of fingerprint data leakage arising from weight disclosures during model updates.Experiments conducted on three public datasets demonstrate that AFFR significantly enhances model accuracy while ensuring robust privacy protection,showcasing its strong application potential and competitiveness in heterogeneous data environments. 展开更多
关键词 Fingerprint recognition privacy protection federated learning adaptive weight adjustment
在线阅读 下载PDF
Wetland Vegetation Species Classification Using Optical and SAR Remote Sensing Images: A Case Study of Chongming Island, Shanghai, China
20
作者 DENG Yaozi SHI Runhe +3 位作者 ZHANG Chao WANG Xiaoyang LIU Chaoshun GAO Wei 《Chinese Geographical Science》 2025年第3期510-527,共18页
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech... Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover. 展开更多
关键词 optical images Synthetic Aperture Radar(SAR) multi-source remote sensing vegetation classification tidal flat wetland Chongming Island Shanghai China
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部