Background Agricultural irrigation is an important practice to safeguard crops against drought and enhance grain yield in arid regions.The Hexi Corridor,known as a classic arid region,faces signifcant pressure on agri...Background Agricultural irrigation is an important practice to safeguard crops against drought and enhance grain yield in arid regions.The Hexi Corridor,known as a classic arid region,faces signifcant pressure on agricultural production and food security due to the scarcity of water resources.There is an urgent need to investigate agricultural water use of the irrigated regions.Water use efciency(WUE),defned as the ratio of gross primary productivity(GPP)to actual evapotranspiration(ET),serves as a valuable indicator linking carbon assimilation and water loss.It enables the quantifcation of areas where water can be utilized more efectively.However,the long-term spatiotemporal dynamics of WUE and driving mechanism in the irrigated areas of the Hexi Corridor remain unclear.Results This study used GPP calculated by a light use efciency model(EF-LUE),ET estimated by an ETMonitor model and irrigated cropland maps across China(IrriMap_CN)to examine the spatiotemporal dynamics of irrigated cropland WUE and its controlling factors in the Hexi Corridor from 2001 to 2018.The results are as following:(1)The average annual WUE was approximately 1.34±0.38 g C kg^(−1) H_(2)O yr^(−1),with an increasing trend of 0.012 g C kg^(−1) H_(2)O yr^(−1),and faster growth observed during 2011–2018 compared to 2001–2010.(2)The contribution of GPP to WUE trends and WUE interannual variability(IAV)was greater than that of ET.(3)The dominant climatic factors of WUE IAV in the Hexi Corridor were SPEI,precipitation,and soil moisture.(4)The standardized Structural Equation Model(SEM),incorporating the relationship between WUE and factors such as water,energy,NDVI,and water-saving irrigation,explained 81%of the variation in irrigated cropland WUE.Here,biological factors(GPP and NDVI)were the primary factors infuencing WUE variability,and water-saving irrigation had a stronger indirect efect than climate factors(water and energy)on variation in WUE.Conclusions Our fndings ofer valuable theoretical insights into the mechanisms governing the interaction between the carbon and water of irrigated cropland,guiding the management of water resources and land in agricultural practices within the Hexi Corridor.展开更多
The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields ...The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration.展开更多
Reducing nitrogen application rates can mitigate issues such as environmental degradation and resource wastage.However,it can also exacerbate problems such as wheat floret degeneration,leading to reduced yields.Theref...Reducing nitrogen application rates can mitigate issues such as environmental degradation and resource wastage.However,it can also exacerbate problems such as wheat floret degeneration,leading to reduced yields.Therefore,investigating wheat floret degeneration mechanisms under low-nitrogen stress and identifying mitigation measures are conducive to achieving high yields and sustainable development.To investigate the physiological mechanism of how low-nitrogen stress affects wheat floret degradation and whether exogenous brassinosteroids(BRs)can alleviate this stress,experiments were designed with treatments of three nitrogen application rates(N0,no nitrogen application;N1,120 kg ha–1 pure nitrogen;N2,240 kg ha–1 pure nitrogen)and exogenous spraying(N0CK,no nitrogen with water spraying;N0BR,no nitrogen with 24-epibrassinolide(an active brassinosteroid)spraying;N1,120 kg ha–1 pure nitrogen with water spraying).The results indicated that low-nitrogen stress generated a large amount of reactive oxygen species.Although wheat spikes synthesized flavonoids to combat oxidative stress,their energy metabolism(glycolysis and tricarboxylic acid cycle)and ascorbate-glutathione cycle were inhibited,which kept the reactive oxygen levels elevated within the spike,induced cell death and exacerbated floret degeneration.Furthermore,brassinosteroids played a role in regulating wheat floret degeneration under low-nitrogen stress.Exogenous foliar spraying of 24-epibrassinolide promoted energy metabolism and the ascorbate-glutathione cycle within the spike,which enhanced the energy charge and effectively mitigated a portion of the reactive oxygen induced by low-nitrogen stress,thereby alleviating the floret degeneration caused by low-nitrogen stress.In summary,low-nitrogen stress disrupts the redox homeostasis of wheat spikes,leading to floret degeneration,while brassinosteroids alleviate floret degeneration by improving the redox state of wheat spikes.This study provides theoretical support for balancing the contradiction between high yields and sustainable development and will be beneficial for the application of low nitrogen in production.展开更多
This study was conducted at Fafan Research Center, Golajo research site to evaluate the effect of Moringa stenopetala and pigeon pea leaf supplementation on growth performance of short-eared Somali goat breed. A total...This study was conducted at Fafan Research Center, Golajo research site to evaluate the effect of Moringa stenopetala and pigeon pea leaf supplementation on growth performance of short-eared Somali goat breed. A total of fifteen yearling indigenous short-eared Somali goat breeds with an initial weight of 15.2 ± 0.30 kg were assigned to three treatment groups using completely randomized design. Pigeon pea (Pp) and Moringa stenopetala (MS) feeds were formulated using 0%, 5%, and 10% inclusion levels of MSLM and PPLM as experimental diets, respectively. The feed of the experiment was prepared in two levels (2 kg of Moringa stenopetala and 2 kg of pigeon pea) and was supplemented to experimental animals in treatments one and two, respectively. The average e initial body weight of selected male goats was 18.82 ± 0.37, 18.8 ± 0.37 and 17.8 ± 0.37 kg under treatment groups T1, T2 and control respectively. Data was analyzed using general linear model (GLM) procedure of SAS computer package Version 9.0 (SAS, 2002). The final weights gain (FWG) of goats on T1 and T2 of experimental group was significantly (P 0.05) the final weight gain of goat supplemented on Moringa stenopetala (T1) and pigeon pea levels (T2). The mean average weight gains (AWG) obtained from the supplemented group in this study were 7.50 ± 0.37 and 7.82 ± 0.37 kg for T1 and T2, whereas mean weight gains for un-supplemented goats were found to be 6.26 ± 0.37 kg. Feeding of dried Moringa stenopetala and pigeon pea leaves mixture improved body weights and average daily body weight gain without affecting feed intake and overall health of Somali goat breed. As Moringa stenopetala and pigeon pea leaves are rich nitrogen/protein source, they can be used effectively as substitute for conventional concentrate in the diet of growing goats at small holder farmer’s level where they can be grown in abundance. Therefore, for higher quality of forage and higher total DM yield for animal feeding, moringa should be harvested at wider harvesting intervals of at least 6th- to 8th-week intervals. Similarly, for pigeon peas, 4- to 6-week harvesting interval can result in optimum forage as well as feed quality and resulted in better growth performances for Somali short-eared goat breeds.展开更多
Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corro...Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corrosion and scaling are main challenges that hinder the widespread application and effective utilization of geothermal energy.This study focuses on the typical geothermal fields in Tai'an,employing qualitative evaluations of the geochemical saturation index with temperature,combined with the corrosion coefficient,Ryznar index,boiler scale,and hard scale assessment,to predict corrosion and scaling trends in the geothermal water of the study area.The results show that the hydrochemical types of geothermal water in the study area are predominantly Na-Ca-SO^(4)and Ca-Na-SO_(4)-HCO_(3),with the water being weakly alkaline.Simulations of saturation index changes with temperature reveal that calcium carbonate scaling is dominant scaling type in the area,with no evidence of calcium sulfate scaling.In the Daiyue Qiaogou geothermal field,the water exhibited corrosive bubble water properties,moderate calcium carbonate scaling,and abundant boiler scaling.Feicheng Anjiazhuang geothermal field showed non-corrosive bubble water,moderate calcium carbonate scaling,and significant boiler scaling.The Daidao'an geothermal field presented corrosive semi-bubble water,moderate calcium carbonate scaling,and abundant boiler scaling.The findings provide a foundation for the efficient exploitation of geothermal resources in the region.Implementing anti-corrosion and scale prevention measures can significantly enhance the utilization of geothermal energy.展开更多
Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their d...Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their distribution and attributes,offering critical guidance for their sustainable exploitation and utilization.This study integrates data from drilling and production tests across 21 geothermal wells to analyze the Jixianian strata,including depth,thickness,temperature,single-well water yield,Groundwater Level Depth(GWD),and Total Dissolved Solids(TDS).Employing fuzzy mathematics,a zoning analysis was performed,yielding quantitative evaluation scores and delineating favorable zones for development.Key findings include:(1)Geothermal reservoirs in the Rongcheng and Niutuozhen uplifts exhibit shallow burial depths,substantial thicknesses,high productivity,and relatively low temperatures,making them highly suitable for large-scale geothermal exploitation;(2)Zones with high resource potential but uncertain conditions require further exploration to mitigate development risks;(3)Areas near the Rongcheng fault or Jixianian strata buried deeper than 4,000 m are recommended for deferred exploitation;(4)Comprehensive evaluation reveals that the Jixianian carbonate geothermal reservoirs in Xiong'an New Area manifest 168 geothermal resources of 5,370.31×10 J,geothermal fluid reserves of 101.17×10 m3,and recoverable fluid 4 reserves of 93.41×10 m3/d under balanced extraction and reinjection.Recoverable geothermal heat 164 amounts to 9.36×10 J/a,equivalent to 319.4×10 t/a of standard coal.This study provides valuable insights into the exploration and sustainable exploitation of deep geothermal reservoirs in Xiong'an New Area,enhancing resource utilization and contributing to the development of a green and sustainable Xiong'an New Area.展开更多
Biocomposites are one of the environmentally friendlymaterials as a substitute for synthetic plastics used for various applications in the automotive,household appliances industry,and interiors.In this study,biocompos...Biocomposites are one of the environmentally friendlymaterials as a substitute for synthetic plastics used for various applications in the automotive,household appliances industry,and interiors.In this study,biocomposites from Polylactic Acid(PLA)and sugarcane bagasse fibers(SBF)were made using the 3D Printing method.The effect of alkalization with NaOH of 0(untreated),4%,6%,and 8%of the fibers were studied.The SBF in PLA was kept at 2%v/v from the total biocomposite.The characterization of all biocomposite tested using tensile,flexural,impact,scanning electron microscope(SEM),thermogravimetric analysis(TGA),and Fourier TransformInfrared(FTIR).The tensile test results showed that the 6%NaOH concentration on the fibers had the highest tensile strength of 34.59MPa compared to pure PLA.Theflexural and impact strengths of the biocomposite samples in the treatment also showed the highest results of 45.62MPa and 45.03 kJ/m^(2),respectively.SEMimaging also confirmed the presence of good bonding between the matrix and fibers.The thermal stability of biocomposite showed an increase in the degradation point after alkalization.There was a change in the chemical functional group in the biocomposite with fibers treated by 6%NaOH at a wavenumber of 1150–1030 cm^(−1).These results indicate that PLA biocomposites have competitive properties for application in various industrial sectors.展开更多
Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled loc...Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled locations.A doline of approximately 15 000 m 2 at 1 900 m above sea level (North Italy) was selected as the study area to estimate a digital elevation model (DEM) using geostatistics,to provide a realistic distribution of the errors and to demonstrate whether using widely available secondary data provided more accurate estimates of soil pH than those obtained by univariate kriging.Elevation was measured at 467 randomly distributed points that were converted into a regular DEM using ordinary kriging.Further,110 pits were located using spatial simulated annealing (SSA) method.The interpolation techniques were multi-linear regression analysis (MLR),ordinary kriging (OK),regression kriging (RK),kriging with external drift (KED) and multi-collocated ordinary cokriging (CKmc).A cross-validation test was used to assess the prediction performances of the different algorithms and then evaluate which methods performed best.RK and KED yielded better results than the more complex CKmc and OK.The choice of the most appropriate interpolation method accounting for redundant auxiliary information was strongly conditioned by site specific situations.展开更多
Monitoring water quality is important for maintaining a healthy watershed, but it is mostly ignored in watershed planning and management. In the Dhrabi watershed of Pakistan, the quality of surface water was monitored...Monitoring water quality is important for maintaining a healthy watershed, but it is mostly ignored in watershed planning and management. In the Dhrabi watershed of Pakistan, the quality of surface water was monitored at 16 locations to assess suitability for irrigation over regular intervals during the period 2007-2010. Similarly, groundwater quality was monitored at 10 locations for drinking and irrigation purposes. There was high spatial and temporal variability in surface water quality. Electrical conductivity (EC) and residual sodium carbonate (RSC) either exceeded or fluctuated around permissible limits at most of the locations throughout the monitoring period. Therefore, the use of such water for irrigation needs special care, otherwise its prolonged use may pose soil salinity and sodicity problems. The trend of EC and RSC for groundwater was similar to that for surface water. Exchangeable Mg2+ exceeded permissible limits for most of the surface water and groundwater samples. In addition, microbial analysis of groundwater revealed that only two out of eight monitoring points during August 2009, none out of eight points during February 2010, and one out of nine points during June 2010 provided water fit for drinking. Soil samples were collected from the catchment areas of the major contributing streams and from the beds of the Kallar Kahar Lake and the Dhrabi Reservoir. The soil samples from the catchments showed high salinity and sodicity that may be the cause of high salinity and sodicity in the streams. The highest EC, sodium adsorption ratio (SAP,) and exchangeable sodium percentage (ESP) in the bed samples from the Kallar Kahar Lake were about 43 dS/m, 56, and 45, respectively. These high values were due to the saline water brought into the lake with the runoff.展开更多
基金supported by the National Key Research and Development Program of China(2021YFD190070406)the Key Research and Development Program of Gansu Province(20YF8NA107)Agricultural Science and Technology Special Project of Gansu Province(GNKJ-2021–32)
文摘Background Agricultural irrigation is an important practice to safeguard crops against drought and enhance grain yield in arid regions.The Hexi Corridor,known as a classic arid region,faces signifcant pressure on agricultural production and food security due to the scarcity of water resources.There is an urgent need to investigate agricultural water use of the irrigated regions.Water use efciency(WUE),defned as the ratio of gross primary productivity(GPP)to actual evapotranspiration(ET),serves as a valuable indicator linking carbon assimilation and water loss.It enables the quantifcation of areas where water can be utilized more efectively.However,the long-term spatiotemporal dynamics of WUE and driving mechanism in the irrigated areas of the Hexi Corridor remain unclear.Results This study used GPP calculated by a light use efciency model(EF-LUE),ET estimated by an ETMonitor model and irrigated cropland maps across China(IrriMap_CN)to examine the spatiotemporal dynamics of irrigated cropland WUE and its controlling factors in the Hexi Corridor from 2001 to 2018.The results are as following:(1)The average annual WUE was approximately 1.34±0.38 g C kg^(−1) H_(2)O yr^(−1),with an increasing trend of 0.012 g C kg^(−1) H_(2)O yr^(−1),and faster growth observed during 2011–2018 compared to 2001–2010.(2)The contribution of GPP to WUE trends and WUE interannual variability(IAV)was greater than that of ET.(3)The dominant climatic factors of WUE IAV in the Hexi Corridor were SPEI,precipitation,and soil moisture.(4)The standardized Structural Equation Model(SEM),incorporating the relationship between WUE and factors such as water,energy,NDVI,and water-saving irrigation,explained 81%of the variation in irrigated cropland WUE.Here,biological factors(GPP and NDVI)were the primary factors infuencing WUE variability,and water-saving irrigation had a stronger indirect efect than climate factors(water and energy)on variation in WUE.Conclusions Our fndings ofer valuable theoretical insights into the mechanisms governing the interaction between the carbon and water of irrigated cropland,guiding the management of water resources and land in agricultural practices within the Hexi Corridor.
基金supported by the Key Research and Development Program of Shaanxi,China(2021NY-083)the National Natural Science Foundation of China(31871567)。
文摘The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration.
基金supported by the Key Research and Development Program of Shaanxi,China(2021NY-083)the National Natural Science Foundation of China(31871567)。
文摘Reducing nitrogen application rates can mitigate issues such as environmental degradation and resource wastage.However,it can also exacerbate problems such as wheat floret degeneration,leading to reduced yields.Therefore,investigating wheat floret degeneration mechanisms under low-nitrogen stress and identifying mitigation measures are conducive to achieving high yields and sustainable development.To investigate the physiological mechanism of how low-nitrogen stress affects wheat floret degradation and whether exogenous brassinosteroids(BRs)can alleviate this stress,experiments were designed with treatments of three nitrogen application rates(N0,no nitrogen application;N1,120 kg ha–1 pure nitrogen;N2,240 kg ha–1 pure nitrogen)and exogenous spraying(N0CK,no nitrogen with water spraying;N0BR,no nitrogen with 24-epibrassinolide(an active brassinosteroid)spraying;N1,120 kg ha–1 pure nitrogen with water spraying).The results indicated that low-nitrogen stress generated a large amount of reactive oxygen species.Although wheat spikes synthesized flavonoids to combat oxidative stress,their energy metabolism(glycolysis and tricarboxylic acid cycle)and ascorbate-glutathione cycle were inhibited,which kept the reactive oxygen levels elevated within the spike,induced cell death and exacerbated floret degeneration.Furthermore,brassinosteroids played a role in regulating wheat floret degeneration under low-nitrogen stress.Exogenous foliar spraying of 24-epibrassinolide promoted energy metabolism and the ascorbate-glutathione cycle within the spike,which enhanced the energy charge and effectively mitigated a portion of the reactive oxygen induced by low-nitrogen stress,thereby alleviating the floret degeneration caused by low-nitrogen stress.In summary,low-nitrogen stress disrupts the redox homeostasis of wheat spikes,leading to floret degeneration,while brassinosteroids alleviate floret degeneration by improving the redox state of wheat spikes.This study provides theoretical support for balancing the contradiction between high yields and sustainable development and will be beneficial for the application of low nitrogen in production.
文摘This study was conducted at Fafan Research Center, Golajo research site to evaluate the effect of Moringa stenopetala and pigeon pea leaf supplementation on growth performance of short-eared Somali goat breed. A total of fifteen yearling indigenous short-eared Somali goat breeds with an initial weight of 15.2 ± 0.30 kg were assigned to three treatment groups using completely randomized design. Pigeon pea (Pp) and Moringa stenopetala (MS) feeds were formulated using 0%, 5%, and 10% inclusion levels of MSLM and PPLM as experimental diets, respectively. The feed of the experiment was prepared in two levels (2 kg of Moringa stenopetala and 2 kg of pigeon pea) and was supplemented to experimental animals in treatments one and two, respectively. The average e initial body weight of selected male goats was 18.82 ± 0.37, 18.8 ± 0.37 and 17.8 ± 0.37 kg under treatment groups T1, T2 and control respectively. Data was analyzed using general linear model (GLM) procedure of SAS computer package Version 9.0 (SAS, 2002). The final weights gain (FWG) of goats on T1 and T2 of experimental group was significantly (P 0.05) the final weight gain of goat supplemented on Moringa stenopetala (T1) and pigeon pea levels (T2). The mean average weight gains (AWG) obtained from the supplemented group in this study were 7.50 ± 0.37 and 7.82 ± 0.37 kg for T1 and T2, whereas mean weight gains for un-supplemented goats were found to be 6.26 ± 0.37 kg. Feeding of dried Moringa stenopetala and pigeon pea leaves mixture improved body weights and average daily body weight gain without affecting feed intake and overall health of Somali goat breed. As Moringa stenopetala and pigeon pea leaves are rich nitrogen/protein source, they can be used effectively as substitute for conventional concentrate in the diet of growing goats at small holder farmer’s level where they can be grown in abundance. Therefore, for higher quality of forage and higher total DM yield for animal feeding, moringa should be harvested at wider harvesting intervals of at least 6th- to 8th-week intervals. Similarly, for pigeon peas, 4- to 6-week harvesting interval can result in optimum forage as well as feed quality and resulted in better growth performances for Somali short-eared goat breeds.
基金funded by the Key R&D Program of Henan,China(No.241111321000)China Geological Survey Program(DD20221676).
文摘Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corrosion and scaling are main challenges that hinder the widespread application and effective utilization of geothermal energy.This study focuses on the typical geothermal fields in Tai'an,employing qualitative evaluations of the geochemical saturation index with temperature,combined with the corrosion coefficient,Ryznar index,boiler scale,and hard scale assessment,to predict corrosion and scaling trends in the geothermal water of the study area.The results show that the hydrochemical types of geothermal water in the study area are predominantly Na-Ca-SO^(4)and Ca-Na-SO_(4)-HCO_(3),with the water being weakly alkaline.Simulations of saturation index changes with temperature reveal that calcium carbonate scaling is dominant scaling type in the area,with no evidence of calcium sulfate scaling.In the Daiyue Qiaogou geothermal field,the water exhibited corrosive bubble water properties,moderate calcium carbonate scaling,and abundant boiler scaling.Feicheng Anjiazhuang geothermal field showed non-corrosive bubble water,moderate calcium carbonate scaling,and significant boiler scaling.The Daidao'an geothermal field presented corrosive semi-bubble water,moderate calcium carbonate scaling,and abundant boiler scaling.The findings provide a foundation for the efficient exploitation of geothermal resources in the region.Implementing anti-corrosion and scale prevention measures can significantly enhance the utilization of geothermal energy.
基金funded by the Study on enhanced heat transfer mechanism of low-permeability carbonate rocks under in-situ conditions under Grant number YK202305the National Natural Science Foundation of China under Grant number 42272350the Geothermal Survey Project of the China Geological Survey under Grant number DD20221676.
文摘Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their distribution and attributes,offering critical guidance for their sustainable exploitation and utilization.This study integrates data from drilling and production tests across 21 geothermal wells to analyze the Jixianian strata,including depth,thickness,temperature,single-well water yield,Groundwater Level Depth(GWD),and Total Dissolved Solids(TDS).Employing fuzzy mathematics,a zoning analysis was performed,yielding quantitative evaluation scores and delineating favorable zones for development.Key findings include:(1)Geothermal reservoirs in the Rongcheng and Niutuozhen uplifts exhibit shallow burial depths,substantial thicknesses,high productivity,and relatively low temperatures,making them highly suitable for large-scale geothermal exploitation;(2)Zones with high resource potential but uncertain conditions require further exploration to mitigate development risks;(3)Areas near the Rongcheng fault or Jixianian strata buried deeper than 4,000 m are recommended for deferred exploitation;(4)Comprehensive evaluation reveals that the Jixianian carbonate geothermal reservoirs in Xiong'an New Area manifest 168 geothermal resources of 5,370.31×10 J,geothermal fluid reserves of 101.17×10 m3,and recoverable fluid 4 reserves of 93.41×10 m3/d under balanced extraction and reinjection.Recoverable geothermal heat 164 amounts to 9.36×10 J/a,equivalent to 319.4×10 t/a of standard coal.This study provides valuable insights into the exploration and sustainable exploitation of deep geothermal reservoirs in Xiong'an New Area,enhancing resource utilization and contributing to the development of a green and sustainable Xiong'an New Area.
基金funded and supported by the Institute of Research and Community Service(LPPM),Universitas Jember,for International Research Collaboration Scheme with project number:3565/UN25.3.1/LT/2023.
文摘Biocomposites are one of the environmentally friendlymaterials as a substitute for synthetic plastics used for various applications in the automotive,household appliances industry,and interiors.In this study,biocomposites from Polylactic Acid(PLA)and sugarcane bagasse fibers(SBF)were made using the 3D Printing method.The effect of alkalization with NaOH of 0(untreated),4%,6%,and 8%of the fibers were studied.The SBF in PLA was kept at 2%v/v from the total biocomposite.The characterization of all biocomposite tested using tensile,flexural,impact,scanning electron microscope(SEM),thermogravimetric analysis(TGA),and Fourier TransformInfrared(FTIR).The tensile test results showed that the 6%NaOH concentration on the fibers had the highest tensile strength of 34.59MPa compared to pure PLA.Theflexural and impact strengths of the biocomposite samples in the treatment also showed the highest results of 45.62MPa and 45.03 kJ/m^(2),respectively.SEMimaging also confirmed the presence of good bonding between the matrix and fibers.The thermal stability of biocomposite showed an increase in the degradation point after alkalization.There was a change in the chemical functional group in the biocomposite with fibers treated by 6%NaOH at a wavenumber of 1150–1030 cm^(−1).These results indicate that PLA biocomposites have competitive properties for application in various industrial sectors.
文摘Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled locations.A doline of approximately 15 000 m 2 at 1 900 m above sea level (North Italy) was selected as the study area to estimate a digital elevation model (DEM) using geostatistics,to provide a realistic distribution of the errors and to demonstrate whether using widely available secondary data provided more accurate estimates of soil pH than those obtained by univariate kriging.Elevation was measured at 467 randomly distributed points that were converted into a regular DEM using ordinary kriging.Further,110 pits were located using spatial simulated annealing (SSA) method.The interpolation techniques were multi-linear regression analysis (MLR),ordinary kriging (OK),regression kriging (RK),kriging with external drift (KED) and multi-collocated ordinary cokriging (CKmc).A cross-validation test was used to assess the prediction performances of the different algorithms and then evaluate which methods performed best.RK and KED yielded better results than the more complex CKmc and OK.The choice of the most appropriate interpolation method accounting for redundant auxiliary information was strongly conditioned by site specific situations.
文摘Monitoring water quality is important for maintaining a healthy watershed, but it is mostly ignored in watershed planning and management. In the Dhrabi watershed of Pakistan, the quality of surface water was monitored at 16 locations to assess suitability for irrigation over regular intervals during the period 2007-2010. Similarly, groundwater quality was monitored at 10 locations for drinking and irrigation purposes. There was high spatial and temporal variability in surface water quality. Electrical conductivity (EC) and residual sodium carbonate (RSC) either exceeded or fluctuated around permissible limits at most of the locations throughout the monitoring period. Therefore, the use of such water for irrigation needs special care, otherwise its prolonged use may pose soil salinity and sodicity problems. The trend of EC and RSC for groundwater was similar to that for surface water. Exchangeable Mg2+ exceeded permissible limits for most of the surface water and groundwater samples. In addition, microbial analysis of groundwater revealed that only two out of eight monitoring points during August 2009, none out of eight points during February 2010, and one out of nine points during June 2010 provided water fit for drinking. Soil samples were collected from the catchment areas of the major contributing streams and from the beds of the Kallar Kahar Lake and the Dhrabi Reservoir. The soil samples from the catchments showed high salinity and sodicity that may be the cause of high salinity and sodicity in the streams. The highest EC, sodium adsorption ratio (SAP,) and exchangeable sodium percentage (ESP) in the bed samples from the Kallar Kahar Lake were about 43 dS/m, 56, and 45, respectively. These high values were due to the saline water brought into the lake with the runoff.