Neuromorphic computing devices leveraging HfO_(2) and ZrO_(2) materials have recently garnered significant attention due to their potential for brain-inspired computing systems.In this study,we present a novel trilaye...Neuromorphic computing devices leveraging HfO_(2) and ZrO_(2) materials have recently garnered significant attention due to their potential for brain-inspired computing systems.In this study,we present a novel trilayer Pt/HfO_(2)/ZrO_(2-x)/HfO_(2)/TiN memristor,engineered with a ZrO_(2-x) oxygen vacancy reservoir(OVR)layer fabricated via radio frequency(RF)sputtering under controlled oxygen ambient.The incorporation of the ZrO_(2-x) OVR layer enables enhanced resistive switching characteristics,including a high ON/OFF ratio(∼8000),excellent uniformity,robust data retention(>105 s),and multilevel storage capabilities.Furthermore,the memristor demonstrates superior synaptic plasticity with linear long-term potentiation(LTP)and depression(LTD),achieving low non-linearity values of 1.36(LTP)and 0.66(LTD),and a recognition accuracy of 95.3%in an MNIST dataset simulation.The unique properties of the ZrO_(2-x) layer,particularly its ability to act as a dynamic oxygen vacancy reservoir,significantly enhance synaptic performance by stabilizing oxygen vacancy migration.These findings establish the OVR-trilayer memristor as a promising candidate for future neuromorphic computing and high-performance memory applications.展开更多
基金financially supported by the National Research Foundation of Korea(no.NRF-2021R1A2C2010781)grant funded by the Korean Government(Ministry of Science and ICT)Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(no.P0012451,The Competency Development Program for Industry Specialist)Korea Government(MOTIE)(no.P0020966,HRD Program for Industrial Innovation).
文摘Neuromorphic computing devices leveraging HfO_(2) and ZrO_(2) materials have recently garnered significant attention due to their potential for brain-inspired computing systems.In this study,we present a novel trilayer Pt/HfO_(2)/ZrO_(2-x)/HfO_(2)/TiN memristor,engineered with a ZrO_(2-x) oxygen vacancy reservoir(OVR)layer fabricated via radio frequency(RF)sputtering under controlled oxygen ambient.The incorporation of the ZrO_(2-x) OVR layer enables enhanced resistive switching characteristics,including a high ON/OFF ratio(∼8000),excellent uniformity,robust data retention(>105 s),and multilevel storage capabilities.Furthermore,the memristor demonstrates superior synaptic plasticity with linear long-term potentiation(LTP)and depression(LTD),achieving low non-linearity values of 1.36(LTP)and 0.66(LTD),and a recognition accuracy of 95.3%in an MNIST dataset simulation.The unique properties of the ZrO_(2-x) layer,particularly its ability to act as a dynamic oxygen vacancy reservoir,significantly enhance synaptic performance by stabilizing oxygen vacancy migration.These findings establish the OVR-trilayer memristor as a promising candidate for future neuromorphic computing and high-performance memory applications.