期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Development and characterization of 3D-printed electroconductive pHEMA-co-MAA NP-laden hydrogels for tissue engineering 被引量:1
1
作者 Sara De Nitto Aleksandra Serafin +3 位作者 Alexandra Karadimou Achim Schmalenberger John J.EMulvihill Maurice N.Collins 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期262-276,共15页
Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl me... Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies. 展开更多
关键词 Conductive nanoparticles Hydroxyethyl methacrylate(HEMA) Ultraviolet(UV)polymerization 3D printing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部