期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于云端地图的智能网联商用车质量估计算法研究 被引量:2
1
作者 张傲 李淑艳 +3 位作者 高博麟 万科科 周光 曹通易 《汽车工程》 EI CSCD 北大核心 2024年第6期1006-1014,共9页
整车质量是车辆动力学参数中的一个关键状态量。在辅助驾驶系统中,整车质量的准确估计对规划控制算法至关重要。传统的质量估计算法在同时估计车辆质量与道路坡度时面临挑战,尤其是坡度估计的误差可能严重影响质量估计的准确性。当前,... 整车质量是车辆动力学参数中的一个关键状态量。在辅助驾驶系统中,整车质量的准确估计对规划控制算法至关重要。传统的质量估计算法在同时估计车辆质量与道路坡度时面临挑战,尤其是坡度估计的误差可能严重影响质量估计的准确性。当前,云控平台提供了高精度的道路地图信息,为进一步优化质量估计算法提供了全新的思路。本研究基于云控平台的车云协同框架,设计了云控系统下的商用车质量估计系统架构。进而基于扩展卡尔曼滤波理论,并结合云端的道路地图信息,开发了商用车质量估计算法。通过将道路坡度视为已知参数而非变化的状态量对整车质量进行估计,并利用实车试验采集到的行驶数据进行了算法对比验证。试验结果表明,基于云端坡度信息的质量估计算法,在空载与满载工况下均能实现快速收敛,估计质量的绝对百分比误差在3%以内,相较于传统的同步估计车辆质量与道路坡度的算法,能够更快且更准确地收敛到车辆真实质量附近。 展开更多
关键词 智能网联汽车 云控系统 质量估计 扩展卡尔曼滤波
在线阅读 下载PDF
Long-term trajectory prediction method based on highway vehicle-following behavior patterns
2
作者 Zhichao An Yimin Wu +5 位作者 Fan Zhang Dong Zhang Bolin Gao Suying Zhang Guang Zhou Aoning Jia 《Journal of Intelligent and Connected Vehicles》 2025年第1期1-11,共11页
To address existing shortcomings such as short time domains and low interpretability,this study proposes a long-term trajectory prediction model for leading vehicles that considers the impact of traffic flow.Through a... To address existing shortcomings such as short time domains and low interpretability,this study proposes a long-term trajectory prediction model for leading vehicles that considers the impact of traffic flow.Through an analysis of trailing trajectory data from the HighD natural driving dataset,fitting relationships for the following behavior patterns were derived.Building upon the intelligent driver model(IDM),three long-term trajectory prediction models were established:acceleration delta velocity(ADV),space delta velocity intelligent driver model(SDVIDM),and space velocity intelligent driver model(SVIDM).These models were then compared with the IDM model through simulations.The results indicate that when there is one vehicle ahead,under aggressive following conditions,the ADV model outperforms the IDM model,reducing the root mean square errors in acceleration,speed,and position by 79.61%,91.26%,and 87.82%,respectively.In scenarios with two vehicles ahead and conservative short-distance following,the SDVIDM model exhibits reductions of 83.42%,92.85%,and 92.25%,while the SVIDM model shows reductions of 82.31%,92.47%,and 94.02%,respectively,compared to the IDM model. 展开更多
关键词 HIGHWAYS long-term trajectory prediction leading vehicle behavior patterns car-following model
在线阅读 下载PDF
Pure quantum gradient descent algorithm and full quantum variational eigensolver
3
作者 Ronghang Chen Zhou Guang +2 位作者 Cong Guo Guanru Feng Shi-Yao Hou 《Frontiers of physics》 SCIE CSCD 2024年第2期221-234,共14页
Optimization problems are prevalent in various fields,and the gradient-based gradient descent algorithm is a widely adopted optimization method.However,in classical computing,computing the numerical gradient for a fun... Optimization problems are prevalent in various fields,and the gradient-based gradient descent algorithm is a widely adopted optimization method.However,in classical computing,computing the numerical gradient for a function with variables necessitates at least d+1 function evaluations,resulting in a computational complexity of O(d).As the number of variables increases,the classical gradient estimation methods require substantial resources,ultimately surpassing the capabilities of classical computers.Fortunately,leveraging the principles of superposition and entanglement in quantum mechanics,quantum computers can achieve genuine parallel computing,leading to exponential acceleration over classical algorithms in some cases.In this paper,we propose a novel quantum-based gradient calculation method that requires only a single oracle calculation to obtain the numerical gradient result for a multivariate function.The complexity of this algorithm is just O(1).Building upon this approach,we successfully implemented the quantum gradient descent algorithm and applied it to the variational quantum eigensolver(VQE),creating a pure quantum variational optimization algorithm.Compared with classical gradient-based optimization algorithm,this quantum optimization algorithm has remarkable complexity advantages,providing an efficient solution to optimization problems.The proposed quantum-based method shows promise in enhancing the performance of optimization algorithms,highlighting the potential of quantum computing in this field. 展开更多
关键词 quantum algorithm gradient descent variational quantum algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部