This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetwork...This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetworks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this researchexplores the integration of multiple sensor modalities (e.g.,Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expandindoor localization methods, particularly in obstructed environments. It addresses the challenge of precise objectlocalization, introducing a novel hybrid DL approach using received signal information (RSI), Received SignalStrength (RSS), and Channel State Information (CSI) data to enhance accuracy and stability. Moreover, thestudy introduces a device-free indoor localization algorithm, offering a significant advancement with potentialobject or individual tracking applications. It recognizes the increasing importance of indoor positioning forlocation-based services. It anticipates future developments while acknowledging challenges such as multipathinterference, noise, data standardization, and scarcity of labeled data. This research contributes significantly toindoor localization technology, offering adaptability, device independence, and multifaceted DL-based solutionsfor real-world challenges and future advancements. Thus, the proposed work addresses challenges in objectlocalization precision and introduces a novel hybrid deep learning approach, contributing to advancing locationcentricservices.While deep learning-based indoor localization techniques have improved accuracy, challenges likedata noise, standardization, and availability of training data persist. However, ongoing developments are expectedto enhance indoor positioning systems to meet real-world demands.展开更多
In this paper,we investigate video quality enhancement using computation offloading to the mobile cloud computing(MCC)environment.Our objective is to reduce the computational complexity required to covert a low-resolu...In this paper,we investigate video quality enhancement using computation offloading to the mobile cloud computing(MCC)environment.Our objective is to reduce the computational complexity required to covert a low-resolution video to high-resolution video while minimizing computation at the mobile client and additional communication costs.To do so,we propose an energy-efficient computation offloading framework for video streaming services in a MCC over the fifth generation(5G)cellular networks.In the proposed framework,the mobile client offloads the computational burden for the video enhancement to the cloud,which renders the side information needed to enhance video without requiring much computation by the client.The cloud detects edges from the upsampled ultra-high-resolution video(UHD)and then compresses and transmits them as side information with the original low-resolution video(e.g.,full HD).Finally,the mobile client decodes the received content and integrates the SI and original content,which produces a high-quality video.In our extensive simulation experiments,we observed that the amount of computation needed to construct a UHD video in the client is 50%-60% lower than that required to decode UHD video compressed by legacy video encoding algorithms.Moreover,the bandwidth required to transmit a full HD video and its side information is around 70% lower than that required for a normal UHD video.The subjective quality of the enhanced UHD is similar to that of the original UHD video even though the client pays lower communication costs with reduced computing power.展开更多
Background: Providing appropriate clinical placement has become increasingly difficult over the past several years. To meet the need, schools of nursing are using simulation laboratory experiences in place of direct p...Background: Providing appropriate clinical placement has become increasingly difficult over the past several years. To meet the need, schools of nursing are using simulation laboratory experiences in place of direct patient care. The COVID-19 pandemic pushed many students out of patient care environments and into the simulation laboratory. Methods: Repeating the research done in 2015, a qualitative case study design and the constructivist theory were again used. Recently graduated registered nurses were interviewed to answer the research questions: How do recent graduates of registered nurse (RN) education programs view the simulation lab experiences from nursing school, and what changes were made to your simulation experiences as a result of COVID-19? Results: Eight participants completed virtual or survey interviews. The data were coded and grouped into the same five themes from the previous research. The data revealed that there have not been significant changes in perceived simulation experiences in the past seven years. Conclusions: The recently graduated nurse has valuable insight regarding the efficacy of simulation laboratory experiences in preparation for real-world nursing. This insight can be used by schools of nursing to design effective simulation experiences.展开更多
Cotton(Gossypium spp.) is an important fiber and oil crop grown worldwide. Water and nutrient stresses are major issues affecting cotton production globally. Root traits are critical in improving water and nutrient up...Cotton(Gossypium spp.) is an important fiber and oil crop grown worldwide. Water and nutrient stresses are major issues affecting cotton production globally. Root traits are critical in improving water and nutrient uptake and maintaining plant productivity under optimal as well as drought conditions.However, root traits have rarely been utilized in cotton breeding programs, a major reason being the lack of information regarding genetic variability for root traits. The objective of this research was to evaluate ten selected cotton genotypes for root traits and water use efficiency. The tested genotypes included germplasm lines(PD 1 and PD 695) and cultivars that are currently grown in the southeastern USA(PHY 499 WRF, PHY 444 WRF, PHY 430 W3 FE, DP 1646 B2 XF, DP 1538 B2 XF, DP 1851 B3 XF, NG5007 B2 XF, and ST 5020 GLT). Experiments were conducted under controlled environmental conditions in 2018 and 2019. A hardpan treatment was included in the second year to evaluate the effect of a soil hardpan on root traits and water use efficiency. Genotype PHY 499 WRF ranked at the top and NG5007 B2 XF ranked at the bottom for root morphological traits(total and fine root length, surface area,and volume) and root weight. PHY 499 WRF was also one of the best biomass producers and had high water use efficiency. PHY 444 WRF, PHY 430 W3 FE, and PD-1 were the other best genotypes in terms of root traits and water use efficiency. All genotypes had higher values for root traits and water use efficiency under hardpan conditions. This trend indicates a horizontal proliferation of root systems when they incur a stress imposed by a hardpan. The genotypic differences identified in this research for root traits and water use efficiency would be valuable for selecting genotypes for cotton breeding programs.展开更多
This paper suggests Sydney sandstone as the first Global Heritage Stone Resource to be nominated from Australia.Sydney sandstone underlies much of the city of Sydney.It is also the most widely utilised dimension stone...This paper suggests Sydney sandstone as the first Global Heritage Stone Resource to be nominated from Australia.Sydney sandstone underlies much of the city of Sydney.It is also the most widely utilised dimension stone in the city.Its use in Sydney has extended over 200 years and it continues to be quarried today for Australian domestic use as well as for export.Existing documentation ranges from extensive technical assessment of the stone,heritage lists with abundant illustrations,as well as a Wikipedia entry.Its earliest international use was probably in New Zealand during the 1830s.展开更多
The AC-electronic and dielectric properties of different phthalocyanine films (ZnPc, CuPc, FePc, and H2Pc) were investigated over a wide range of temperature. Both real and imaginary parts of the dielectric constant...The AC-electronic and dielectric properties of different phthalocyanine films (ZnPc, CuPc, FePc, and H2Pc) were investigated over a wide range of temperature. Both real and imaginary parts of the dielectric constant (ε = ε1 - ε2) were found to be influenced by temperature and frequency. Qualitatively the behavior was the same for those compounds; however, the central atom, film thickness, and the electrode type play an important role in the variation of their values. The relaxation time, r, was strongly frequency-dependent at all temperatures and low frequencies, while a weak dependency is observed at higher frequencies. The relaxation activation energy was derived from the slopes of the fitted lines of In r and the reciprocal of the temperature (l/T). The values of the activation energy were accounted for the hopping process at low temperatures, while a thermally activated conduction process was dominant at higher temperatures. The maximum barrier height, Wm, was found to be temperature and frequency dependent for all phthalocyanine compounds. The value Wm depends greatly on the nature of the central atom and electrode material type. The correlated barrier hopping model was found to be the appropriate mechanism to describe the charge carrier's transport in phthalocyanine films.展开更多
Chloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here, we analyzed the role of two previously characterized PRAT protein family members, encoded by At3...Chloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here, we analyzed the role of two previously characterized PRAT protein family members, encoded by At3g49560 (HP30) and At5g24650 (HP30-2), in planta using a combination of genetic, cell biological and biochemical approaches. Expression studies and green fluorescent protein tagging identified HP30-2 both in chloroplasts and mitochondria, whereas HP30 was located exclusively in chloroplasts. Biochemical evidence was obtained for an association of mitochondrial HP30-2 with two distinct protein complexes, one containing the inner membrane translocase TIM22 and the other containing an alternative NAD(P)H dehydrogenase subunit (NDCI) implicated in a respiratory complex 1-1ike electron trans- port chain. Through its association with TIM22, HP30-2 is involved in the uptake of carrier proteins and other, hydrophobic membrane proteins lacking cleavable N H2-terminal presequences, whereas HP30-2's interaction with NDC1 may permit controlling mitochondrial biogenesis and activity.展开更多
Rhizodeposits in rice paddy soil are important in global C sequestration and cycling.This study explored the effects of elevated CO_(2) and N fertilization during the rice growing season on the subsequent mineralizati...Rhizodeposits in rice paddy soil are important in global C sequestration and cycling.This study explored the effects of elevated CO_(2) and N fertilization during the rice growing season on the subsequent mineralization and retention of rhizodeposit-C in soil aggregates after harvest.Rice(Oryza sativa L.)was labeled with ^(13)CO_(2) under ambient(400 ppm)and elevated(800 ppm)CO_(2) concentrations with and without N fertilization.After harvest,soil with labeled rhizodeposits was collected,separated into three aggregate size fractions,and flood-incubated for 100 d.The initial rhizodeposit-^(13)C content of N-fertilized microaggregates was less than 65%of that of non-fertilized microaggregates.During the incubation of microaggregates separated from N-fertilized soils,3%–9%and 9%–16%more proportion of rhizodeposit-^(13)C was mineralized to ^(13)CO_(2),and incorporated into the microbial biomass,respectively,while less was allocated to soil organic carbon than in the non-fertilized soils.Elevated CO_(2) increased the rhizodeposit-^(13)C content of all aggregate fractions by 10%–80%,while it reduced cumulative ^(13)CO_(2) emission and the bioavailable C pool size of rhizodeposit-C,especially in N-fertilized soil,except for the silt-clay fraction.It also resulted in up to 23%less rhizodeposit-C incorporated into the microbial biomass of the three soil aggregates,and up to 23%more incorporated into soil organic carbon.These results were relatively weak in the silt-clay fraction.Elevated CO_(2) and N fertilizer applied in rice growing season had a legacy effect on subsequent mineralization and retention of rhizodeposits in paddy soils after harvest,the extent of which varied among the soil aggregates.展开更多
基金the Fundamental Research Grant Scheme-FRGS/1/2021/ICT09/MMU/02/1,Ministry of Higher Education,Malaysia.
文摘This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetworks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this researchexplores the integration of multiple sensor modalities (e.g.,Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expandindoor localization methods, particularly in obstructed environments. It addresses the challenge of precise objectlocalization, introducing a novel hybrid DL approach using received signal information (RSI), Received SignalStrength (RSS), and Channel State Information (CSI) data to enhance accuracy and stability. Moreover, thestudy introduces a device-free indoor localization algorithm, offering a significant advancement with potentialobject or individual tracking applications. It recognizes the increasing importance of indoor positioning forlocation-based services. It anticipates future developments while acknowledging challenges such as multipathinterference, noise, data standardization, and scarcity of labeled data. This research contributes significantly toindoor localization technology, offering adaptability, device independence, and multifaceted DL-based solutionsfor real-world challenges and future advancements. Thus, the proposed work addresses challenges in objectlocalization precision and introduces a novel hybrid deep learning approach, contributing to advancing locationcentricservices.While deep learning-based indoor localization techniques have improved accuracy, challenges likedata noise, standardization, and availability of training data persist. However, ongoing developments are expectedto enhance indoor positioning systems to meet real-world demands.
文摘In this paper,we investigate video quality enhancement using computation offloading to the mobile cloud computing(MCC)environment.Our objective is to reduce the computational complexity required to covert a low-resolution video to high-resolution video while minimizing computation at the mobile client and additional communication costs.To do so,we propose an energy-efficient computation offloading framework for video streaming services in a MCC over the fifth generation(5G)cellular networks.In the proposed framework,the mobile client offloads the computational burden for the video enhancement to the cloud,which renders the side information needed to enhance video without requiring much computation by the client.The cloud detects edges from the upsampled ultra-high-resolution video(UHD)and then compresses and transmits them as side information with the original low-resolution video(e.g.,full HD).Finally,the mobile client decodes the received content and integrates the SI and original content,which produces a high-quality video.In our extensive simulation experiments,we observed that the amount of computation needed to construct a UHD video in the client is 50%-60% lower than that required to decode UHD video compressed by legacy video encoding algorithms.Moreover,the bandwidth required to transmit a full HD video and its side information is around 70% lower than that required for a normal UHD video.The subjective quality of the enhanced UHD is similar to that of the original UHD video even though the client pays lower communication costs with reduced computing power.
文摘Background: Providing appropriate clinical placement has become increasingly difficult over the past several years. To meet the need, schools of nursing are using simulation laboratory experiences in place of direct patient care. The COVID-19 pandemic pushed many students out of patient care environments and into the simulation laboratory. Methods: Repeating the research done in 2015, a qualitative case study design and the constructivist theory were again used. Recently graduated registered nurses were interviewed to answer the research questions: How do recent graduates of registered nurse (RN) education programs view the simulation lab experiences from nursing school, and what changes were made to your simulation experiences as a result of COVID-19? Results: Eight participants completed virtual or survey interviews. The data were coded and grouped into the same five themes from the previous research. The data revealed that there have not been significant changes in perceived simulation experiences in the past seven years. Conclusions: The recently graduated nurse has valuable insight regarding the efficacy of simulation laboratory experiences in preparation for real-world nursing. This insight can be used by schools of nursing to design effective simulation experiences.
基金the South Carolina Cotton Board and Cotton Incorporated for funding this project。
文摘Cotton(Gossypium spp.) is an important fiber and oil crop grown worldwide. Water and nutrient stresses are major issues affecting cotton production globally. Root traits are critical in improving water and nutrient uptake and maintaining plant productivity under optimal as well as drought conditions.However, root traits have rarely been utilized in cotton breeding programs, a major reason being the lack of information regarding genetic variability for root traits. The objective of this research was to evaluate ten selected cotton genotypes for root traits and water use efficiency. The tested genotypes included germplasm lines(PD 1 and PD 695) and cultivars that are currently grown in the southeastern USA(PHY 499 WRF, PHY 444 WRF, PHY 430 W3 FE, DP 1646 B2 XF, DP 1538 B2 XF, DP 1851 B3 XF, NG5007 B2 XF, and ST 5020 GLT). Experiments were conducted under controlled environmental conditions in 2018 and 2019. A hardpan treatment was included in the second year to evaluate the effect of a soil hardpan on root traits and water use efficiency. Genotype PHY 499 WRF ranked at the top and NG5007 B2 XF ranked at the bottom for root morphological traits(total and fine root length, surface area,and volume) and root weight. PHY 499 WRF was also one of the best biomass producers and had high water use efficiency. PHY 444 WRF, PHY 430 W3 FE, and PD-1 were the other best genotypes in terms of root traits and water use efficiency. All genotypes had higher values for root traits and water use efficiency under hardpan conditions. This trend indicates a horizontal proliferation of root systems when they incur a stress imposed by a hardpan. The genotypic differences identified in this research for root traits and water use efficiency would be valuable for selecting genotypes for cotton breeding programs.
文摘This paper suggests Sydney sandstone as the first Global Heritage Stone Resource to be nominated from Australia.Sydney sandstone underlies much of the city of Sydney.It is also the most widely utilised dimension stone in the city.Its use in Sydney has extended over 200 years and it continues to be quarried today for Australian domestic use as well as for export.Existing documentation ranges from extensive technical assessment of the stone,heritage lists with abundant illustrations,as well as a Wikipedia entry.Its earliest international use was probably in New Zealand during the 1830s.
文摘The AC-electronic and dielectric properties of different phthalocyanine films (ZnPc, CuPc, FePc, and H2Pc) were investigated over a wide range of temperature. Both real and imaginary parts of the dielectric constant (ε = ε1 - ε2) were found to be influenced by temperature and frequency. Qualitatively the behavior was the same for those compounds; however, the central atom, film thickness, and the electrode type play an important role in the variation of their values. The relaxation time, r, was strongly frequency-dependent at all temperatures and low frequencies, while a weak dependency is observed at higher frequencies. The relaxation activation energy was derived from the slopes of the fitted lines of In r and the reciprocal of the temperature (l/T). The values of the activation energy were accounted for the hopping process at low temperatures, while a thermally activated conduction process was dominant at higher temperatures. The maximum barrier height, Wm, was found to be temperature and frequency dependent for all phthalocyanine compounds. The value Wm depends greatly on the nature of the central atom and electrode material type. The correlated barrier hopping model was found to be the appropriate mechanism to describe the charge carrier's transport in phthalocyanine films.
基金supported by the Chaire d’Excellence Program of the French Ministry of National Education and Research(to CR)
文摘Chloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here, we analyzed the role of two previously characterized PRAT protein family members, encoded by At3g49560 (HP30) and At5g24650 (HP30-2), in planta using a combination of genetic, cell biological and biochemical approaches. Expression studies and green fluorescent protein tagging identified HP30-2 both in chloroplasts and mitochondria, whereas HP30 was located exclusively in chloroplasts. Biochemical evidence was obtained for an association of mitochondrial HP30-2 with two distinct protein complexes, one containing the inner membrane translocase TIM22 and the other containing an alternative NAD(P)H dehydrogenase subunit (NDCI) implicated in a respiratory complex 1-1ike electron trans- port chain. Through its association with TIM22, HP30-2 is involved in the uptake of carrier proteins and other, hydrophobic membrane proteins lacking cleavable N H2-terminal presequences, whereas HP30-2's interaction with NDC1 may permit controlling mitochondrial biogenesis and activity.
基金This study was financially supported by the National Key Research and Development Program of China(2017YFD0301504)the National Natural Science Foundation of China(41671292,41771334,41877104,42007097)+4 种基金the Japan-China Scientific Cooperation Program between NSFC and JSPS(41811540031)the Hunan Province Base for Scientific and Technological Innovation Cooperation(2018WK4012)the Innovation Group of Natural Science Foundation of Hunan Province(2019JJ10003)the Natural Science Foundation of Hunan Province for Excellent Young Scholars(2019JJ30028)the Youth Innovation Team Project of ISA,CAS(2017QNCXTD_GTD).
文摘Rhizodeposits in rice paddy soil are important in global C sequestration and cycling.This study explored the effects of elevated CO_(2) and N fertilization during the rice growing season on the subsequent mineralization and retention of rhizodeposit-C in soil aggregates after harvest.Rice(Oryza sativa L.)was labeled with ^(13)CO_(2) under ambient(400 ppm)and elevated(800 ppm)CO_(2) concentrations with and without N fertilization.After harvest,soil with labeled rhizodeposits was collected,separated into three aggregate size fractions,and flood-incubated for 100 d.The initial rhizodeposit-^(13)C content of N-fertilized microaggregates was less than 65%of that of non-fertilized microaggregates.During the incubation of microaggregates separated from N-fertilized soils,3%–9%and 9%–16%more proportion of rhizodeposit-^(13)C was mineralized to ^(13)CO_(2),and incorporated into the microbial biomass,respectively,while less was allocated to soil organic carbon than in the non-fertilized soils.Elevated CO_(2) increased the rhizodeposit-^(13)C content of all aggregate fractions by 10%–80%,while it reduced cumulative ^(13)CO_(2) emission and the bioavailable C pool size of rhizodeposit-C,especially in N-fertilized soil,except for the silt-clay fraction.It also resulted in up to 23%less rhizodeposit-C incorporated into the microbial biomass of the three soil aggregates,and up to 23%more incorporated into soil organic carbon.These results were relatively weak in the silt-clay fraction.Elevated CO_(2) and N fertilizer applied in rice growing season had a legacy effect on subsequent mineralization and retention of rhizodeposits in paddy soils after harvest,the extent of which varied among the soil aggregates.