期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Cloud Computing Fault Detection Method Based on Deep Learning 被引量:1
1
作者 Weipeng Gao Youchan Zhu 《Journal of Computer and Communications》 2017年第12期24-34,共11页
In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition ... In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition is difficult and the amount of data is too small, with large data training methods to solve a certain degree of difficulty. Therefore, a fault detection method based on depth learning is proposed. An auto-encoder with sparse denoising is used to construct a parallel structure network. It can automatically learn and extract the fault data characteristics and realize fault detection through deep learning. The experiment shows that this method can detect the cloud computing abnormality and determine the fault more effectively and accurately than the traditional method in the case of the small amount of cloud fault feature data. 展开更多
关键词 FAULT Detection Cloud Computing Auto-Encoder SPARSE DENOISING Deep Learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部