In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe...The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.展开更多
In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the l...In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application.展开更多
This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires t...This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme.展开更多
This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The...This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The revised objective function makes the virtual tube generating curve not only smooth but also close to the path points generated by the A*algorithm.In six dif-ferent simulation scenarios,the efficiency of the modified A*algorithm is 6.2%higher than that of the traditional A*algorithm.The efficiency of path planning and virtual tube planning is veri-fied by simulations.The effectiveness of interception control is verified by a software-in-loop(SIL)simulation.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
In this study,we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults.First,an inverse hysteresis dynamics model is introduced,and then...In this study,we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults.First,an inverse hysteresis dynamics model is introduced,and then the control input is divided into an expected input and an error compensator.Second,a novel adaptive neural network-based control scheme is proposed to cancel the unknown input hysteresis.Subsequently,by modifying the adaptive laws and local control laws,a fault-tolerant control strategy is applied to address uncertain intermittent actuator faults in a flexible manipulator system.Through the direct Lyapunov theory,the proposed scheme allows the state errors to asymptotically converge to a specified interval.Finally,the effectiveness of the proposed scheme is verified through numerical simulations and experiments.展开更多
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal...The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.展开更多
It is our great pleasure to organize this special issue in Control Theory and Technology in honor of the 90th birthday of Professor Huashu Qin.She is one of the pioneers in control theory and applications in China,and...It is our great pleasure to organize this special issue in Control Theory and Technology in honor of the 90th birthday of Professor Huashu Qin.She is one of the pioneers in control theory and applications in China,and has made many truly outstanding contributions to the field including nonlinear dynamics and control,intelligent control,robotics and complex systems.It is no surprise that she was selected as a representative introduced significantly in“Women in Control”of IEEE Control Systems Magazine.展开更多
This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a suffi...This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a sufficient condition for the exact controllability of the rational expectations model.In particular,we derive a sufficient Gramian matrix condition and a rank condition for the delay-free case.The key is the solvability of the backward stochastic difference equations with input delay which is derived from the forward and backward stochastic system.展开更多
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor...Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions tha...To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study.展开更多
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded...Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.展开更多
In this paper, the multi-agent systems(MASs) typically with heterogeneous unknown nonlinearities and nonidentical unknown control coefficients are studied. Although the model information of MASs is coarse, the leader-...In this paper, the multi-agent systems(MASs) typically with heterogeneous unknown nonlinearities and nonidentical unknown control coefficients are studied. Although the model information of MASs is coarse, the leader-following consensus is still pursued, with a prescribed performance and zero consensus errors. Leveraging a powerful funnel control strategy, a fully distributed and completely relative-state-dependent protocol is designed. Distinctively, the time-varying function characterizing the performance boundary is introduced, not only to construct the funnel gains but also as an indispensable part of the protocol,enhancing the control ability and enabling the consensus errors to converge to zero(rather than a residual set). Remark that when control directions are unknown, coexisting with inherent system nonlinearities, it is essential to incorporate an additional compensation mechanism while imposing a hierarchical structure of communication topology for the control design and analysis. Simulation examples are given to illustrate the effectiveness of the theoretical results.展开更多
Desert lakes are an important link in the water cycle and an important reservoir of water resources in arid and semi-arid areas,playing an important role in maintaining the stability of the regional natural environmen...Desert lakes are an important link in the water cycle and an important reservoir of water resources in arid and semi-arid areas,playing an important role in maintaining the stability of the regional natural environment.However,studies on the hydrochemical evolution and transformation relationships between desert lake groups and potential water sources are limited.Taking the Qixing Lake,the only lake group within the Hobq Desert in China,as the area of interest,this study collected samples of precipitation water,Yellow River water,lake water,and groundwater at different burial depths in the Qixing Lake region from July 2023 to October 2024.The hydrochemistry of different water bodies was analyzed using a combination of Piper diagrams,Gibbs diagrams,ratio of ions,and MixSIAR mixing models to reveal the transformational relationships of lake water with precipitation,groundwater,and Yellow River water.Results showed that both groundwater and surface water in the study area are weakly-to-strongly alkaline,with HCO_(3)–as the dominant anion and Na^(+),Ca^(2+),and K^(+) as the main cations.The hydrochemical type of groundwater and some lakes was dominated by HCO3–-Na+,whereas that of other lakes was dominated by Cl–-Na^(+)and HCO3–-Mg^(2+).The hydrochemistry of groundwater and Yellow River water in the Qixing Lake region was controlled mainly by a combination of evaporite saline and silicate rock mineral dissolution.The local meteoric water line(LMWL)of the study area proved that regional water bodies are strongly affected by evaporative fractionation.The MixSIAR model revealed that shallow groundwater is the main recharge source of the lake group in the Qixing Lake region,accounting for 59.0%–64.2%of the total.The findings can provide references for the identification of water sources in desert lakes and the development and utilization of water resources in desert lake regions.展开更多
The elimination of the vertical tail in tailless aircraft results in a significant decrease in heading static stability,causing substantial coupling among the three control channels.In addition,in specific operational...The elimination of the vertical tail in tailless aircraft results in a significant decrease in heading static stability,causing substantial coupling among the three control channels.In addition,in specific operational scenarios,the tailless aircraft is prone to electromagnetic interference,leading to the generation of high-frequency noise and consequently compromising their control performance.To address these issues,a decoupling control method based on a fractional-order error extended state observer(FOEESO)is proposed.A nonlinear model of a tailless aircraft with thrust vectoring capabilities is first developed.The decoupling control design for the three control channels is then implemented using FOEESO,with the asymptotic convergence conditions outlined.The proposed method is evaluated through simulations and compared to coupled control and linear extended state observer(LESO)techniques.Numerical simulations demonstrate that the FOEESO-based control methodology achieves effective decoupling,exhibiting 6.9%and 11.7%reductions in integral absolute error(IAE)relative to LESO under nominal operational conditions and critical fault scenarios,respectively.These improvements thereby highlight FOEESO’s capability to enhance closed-loop stability and tracking precision in tailless aircraft control systems.展开更多
Drought is a natural disaster that significantly impacts the Earth's ecological environment,especially in arid and semi-arid areas.However,drought at a large watershed scale,which plays an important role in sustai...Drought is a natural disaster that significantly impacts the Earth's ecological environment,especially in arid and semi-arid areas.However,drought at a large watershed scale,which plays an important role in sustainable environmental development,has received limited attention.In this study,we analyzed the spatial and temporal variations in drought in the Yellow River Basin,China from 2002 to 2022 and its driving factors using a vegetation health index(VHI).Results showed that average VHI in the Yellow River Basin from 2002 to 2022 was 0.581,with the most severe drought occurring in summer and autumn.The basin showed a slow decreasing trend in drought during the study period.Regarding spatial distribution of monthly drought frequency and trend of VHI,the mean of the frequency was 13.00%,and 78.00%had a drought frequency of 10.00%–20.00%,with moderate drought generally prevailing.Regarding land use types,forest land,grassland,agricultural land,construction land,water body,and wasteland showed a descending order for the annual average VHI.VHI of each land use type was the lowest in summer and autumn,with pronounced seasonal characteristics.The uneven distribution of drought in the Yellow River Basin was primarily influenced by annual precipitation,solar-induced chlorophyll fluorescence,and relative humidity.VHI effectively quantified drought conditions at a regional scale and proved to be highly applicable in the Yellow River Basin.The results clarify the effectiveness of VHI for drought monitoring in the Yellow River Basin and can provide a reference for drought monitoring across the basin.展开更多
Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to co...Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to concentrate on iso-lated technical elements and are deficient in addressing the full spectrum of critical technologies and development needs in a systematic and integrative manner.Furthermore,the current suite of tools has not adequately addressed the challenge of bridging the gap between simulation and real-world deployment of algorithms.Therefore,a comprehensive solution must be developed that encompasses the entire IUSS development life-cycle.In this study,we present the RflySim ToolChain,which has been developed with the specific aim of facilitating the rapid development and validation of IUSSs.The RflySim ToolChain employs a model-based design(MBD)approach,integrating a modeling and simulation module,a lower reliable control mo-dule,and an upper swarm decision-making module.This compre-hensive integration encompasses the entire process,from mo-deling and simulation to testing and deployment,thereby enabling users to rapidly construct and validate IUSSs.The prin-cipal advantages of the RflySim ToolChain are as follows:it pro-vides a comprehensive solution that meets the full-stack devel-opment needs of IUSSs;the highly modular architecture and comprehensive software development kit(SDK)facilitate the automation of the entire IUSS development process.Further-more,the high-fidelity model design and reliable architecture solution ensure a seamless transition from simulation to real-world deployment,which is known as the simulation to reality(Sim2Real)process.This paper presents a series of case stu-dies that illustrate the effectiveness of the RflySim ToolChain in supporting the research and application of IUSSs.展开更多
Based on the unique catalytic properties of precious metals,the introduction of precious metals into metal oxide semiconductors will greatly improve the gas-sensitive properties of materials.As a new type of porous ma...Based on the unique catalytic properties of precious metals,the introduction of precious metals into metal oxide semiconductors will greatly improve the gas-sensitive properties of materials.As a new type of porous material,metal–organic frameworks(MOF)can be used for gas separation and adsorption due to their adjustable pore size and acceptable thermal stability.In this work,the ZIF-71 MOF was synthesized on CuO nanofibers doped with different concentrations of Ru to form a Ru–CuO@ZIF-71 nanocomposite sensor,which was then used for H_(2)S detection.The sensor shows sensitivity to trace amounts of H_(2)S gas(100 ppb),and the response is greatly enhanced at the optimal Ru doping ratio and operating temperature.The introduction of the ZIF-71 membrane can significantly increase the selectivity of the sensor while further improving the sensitivity.Finally,the possible sensing mechanism of the Ru–CuO@ZIF-71 sensor was explored.The enhancement of the H_(2)S gas sensing properties may be attributed to the catalysis of Ru and the formation of the Schottky junction at the Ru–CuO interface.Besides,the calculation based on density functional theory reveals enhanced adsorption capacities of CuO for H_(2)S after Ru doping.Therefore,the Ru–CuO@ZIF-71 sensor has strong application potential in exhaled gas detection and portable detection of H_(2)S gas in industrial environments.展开更多
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.
文摘In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application.
基金supported by the National Natural Science Foundation of China under Grant 62073190the Science Center Program of National Natural Science Foundation of China under Grant 62188101.
文摘This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme.
基金supported by the National Natural Science Foundation of China(62303350).
文摘This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The revised objective function makes the virtual tube generating curve not only smooth but also close to the path points generated by the A*algorithm.In six dif-ferent simulation scenarios,the efficiency of the modified A*algorithm is 6.2%higher than that of the traditional A*algorithm.The efficiency of path planning and virtual tube planning is veri-fied by simulations.The effectiveness of interception control is verified by a software-in-loop(SIL)simulation.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
基金supported in part by the National Key Research and Development Program of China(2023YFB4706400)the National Natural Science Foundation of China(62273112,62073030,62203161)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2023B1515120018,2023B1515120019)the Open Project of Xiangjiang Laboratory(23XJ03012)the Natural Science Foundation of Hunan Province(2024JJ5087)the Natural Science Foundation of Jiangxi Province(20232BAB212024)the National Research Foundation of Korea funded by the Ministry of Science and ICT,South Korea(IRIS-2023-00207954)the Science and Technology Planning Project of Guangzhou,China(2023A03J0120)the Guangzhou University Research Project(RC2023037)
文摘In this study,we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults.First,an inverse hysteresis dynamics model is introduced,and then the control input is divided into an expected input and an error compensator.Second,a novel adaptive neural network-based control scheme is proposed to cancel the unknown input hysteresis.Subsequently,by modifying the adaptive laws and local control laws,a fault-tolerant control strategy is applied to address uncertain intermittent actuator faults in a flexible manipulator system.Through the direct Lyapunov theory,the proposed scheme allows the state errors to asymptotically converge to a specified interval.Finally,the effectiveness of the proposed scheme is verified through numerical simulations and experiments.
基金funded by the National Natural Science Foundation of China(52475580)the Special Foundation of the Taishan Scholar Project(tsqn202211077,tsqn202311077)+3 种基金Shandong Provincial Excellent Overseas Young Scholar Foundation(2023HWYQ-069)the Shandong Provincial Natural Science Foundation(ZR2023ME118,ZR2023QF080)the Natural Science Foundation of Qingdao City(23-2-1-219-zyyd-jch,23-2-1-111-zyyd-jch)the Fundamental Research Funds for the Central Universities(23CX06032A).
文摘The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.
文摘It is our great pleasure to organize this special issue in Control Theory and Technology in honor of the 90th birthday of Professor Huashu Qin.She is one of the pioneers in control theory and applications in China,and has made many truly outstanding contributions to the field including nonlinear dynamics and control,intelligent control,robotics and complex systems.It is no surprise that she was selected as a representative introduced significantly in“Women in Control”of IEEE Control Systems Magazine.
基金supported by the National Natural Science Foundation of China under Grants 61821004,62250056,62350710214,U23A20325,62350055the Natural Science Foundation of Shandong Province,China(ZR2021ZD14,ZR2021JQ24)+2 种基金High-level Talent Team Project of Qingdao West Coast New Area,China(RCTD-JC-2019-05)Key Research and Development Program of Shandong Province,China(2020CXGC01208)Science and Technology Project of Qingdao West Coast New Area,China(2019-32,2020-20,2020-1-4).
文摘This paper considers the rational expectations model with multiplicative noise and input delay,where the system dynamics rely on the conditional expectations of future states.The main contribution is to obtain a sufficient condition for the exact controllability of the rational expectations model.In particular,we derive a sufficient Gramian matrix condition and a rank condition for the delay-free case.The key is the solvability of the backward stochastic difference equations with input delay which is derived from the forward and backward stochastic system.
基金supported by the National Key Research and Development Project of China(No.2023YFB3709605)the National Natural Science Foundation of China(No.62073193)the National College Student Innovation Training Program(No.202310422122)。
文摘Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金supported by the Beijing Natural Science Foundation(No.L212029)the National Natural Science Foundation of China(No.62271043).
文摘To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study.
基金supported by the National Natural Science Foundation of China(62303273,62373226)the National Research Foundation,Singapore through the Medium Sized Center for Advanced Robotics Technology Innovation(WP2.7)
文摘Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.
基金supported in part by the National Natural Science Foundation of China(61821004,62033007)Major Fundamental Research Program of Shandong Province(ZR2023ZD37)
文摘In this paper, the multi-agent systems(MASs) typically with heterogeneous unknown nonlinearities and nonidentical unknown control coefficients are studied. Although the model information of MASs is coarse, the leader-following consensus is still pursued, with a prescribed performance and zero consensus errors. Leveraging a powerful funnel control strategy, a fully distributed and completely relative-state-dependent protocol is designed. Distinctively, the time-varying function characterizing the performance boundary is introduced, not only to construct the funnel gains but also as an indispensable part of the protocol,enhancing the control ability and enabling the consensus errors to converge to zero(rather than a residual set). Remark that when control directions are unknown, coexisting with inherent system nonlinearities, it is essential to incorporate an additional compensation mechanism while imposing a hierarchical structure of communication topology for the control design and analysis. Simulation examples are given to illustrate the effectiveness of the theoretical results.
基金supported by the Inner Mongolia Autonomous Region"Unveiling the List of Commanders"Project(2024JBGS0019)the Inner Mongolia Autonomous Region Graduate Student Research Innovation Project(KC2024036B)+1 种基金the Innovative Team on Desertification Control and Sandy Area Resource Conservation and Utilization(BR241301)the Desert Sand Ecological Protection and Management Technology Innovation Team(NMGIRT2408).
文摘Desert lakes are an important link in the water cycle and an important reservoir of water resources in arid and semi-arid areas,playing an important role in maintaining the stability of the regional natural environment.However,studies on the hydrochemical evolution and transformation relationships between desert lake groups and potential water sources are limited.Taking the Qixing Lake,the only lake group within the Hobq Desert in China,as the area of interest,this study collected samples of precipitation water,Yellow River water,lake water,and groundwater at different burial depths in the Qixing Lake region from July 2023 to October 2024.The hydrochemistry of different water bodies was analyzed using a combination of Piper diagrams,Gibbs diagrams,ratio of ions,and MixSIAR mixing models to reveal the transformational relationships of lake water with precipitation,groundwater,and Yellow River water.Results showed that both groundwater and surface water in the study area are weakly-to-strongly alkaline,with HCO_(3)–as the dominant anion and Na^(+),Ca^(2+),and K^(+) as the main cations.The hydrochemical type of groundwater and some lakes was dominated by HCO3–-Na+,whereas that of other lakes was dominated by Cl–-Na^(+)and HCO3–-Mg^(2+).The hydrochemistry of groundwater and Yellow River water in the Qixing Lake region was controlled mainly by a combination of evaporite saline and silicate rock mineral dissolution.The local meteoric water line(LMWL)of the study area proved that regional water bodies are strongly affected by evaporative fractionation.The MixSIAR model revealed that shallow groundwater is the main recharge source of the lake group in the Qixing Lake region,accounting for 59.0%–64.2%of the total.The findings can provide references for the identification of water sources in desert lakes and the development and utilization of water resources in desert lake regions.
文摘The elimination of the vertical tail in tailless aircraft results in a significant decrease in heading static stability,causing substantial coupling among the three control channels.In addition,in specific operational scenarios,the tailless aircraft is prone to electromagnetic interference,leading to the generation of high-frequency noise and consequently compromising their control performance.To address these issues,a decoupling control method based on a fractional-order error extended state observer(FOEESO)is proposed.A nonlinear model of a tailless aircraft with thrust vectoring capabilities is first developed.The decoupling control design for the three control channels is then implemented using FOEESO,with the asymptotic convergence conditions outlined.The proposed method is evaluated through simulations and compared to coupled control and linear extended state observer(LESO)techniques.Numerical simulations demonstrate that the FOEESO-based control methodology achieves effective decoupling,exhibiting 6.9%and 11.7%reductions in integral absolute error(IAE)relative to LESO under nominal operational conditions and critical fault scenarios,respectively.These improvements thereby highlight FOEESO’s capability to enhance closed-loop stability and tracking precision in tailless aircraft control systems.
基金funded by the Natural Science Foundation Project of Inner Mongolia Autonomous Region(2023LHMS04013)the Research Program for Higher Education Institutions in Inner Mongolia Autonomous Region(STAQZX202319).
文摘Drought is a natural disaster that significantly impacts the Earth's ecological environment,especially in arid and semi-arid areas.However,drought at a large watershed scale,which plays an important role in sustainable environmental development,has received limited attention.In this study,we analyzed the spatial and temporal variations in drought in the Yellow River Basin,China from 2002 to 2022 and its driving factors using a vegetation health index(VHI).Results showed that average VHI in the Yellow River Basin from 2002 to 2022 was 0.581,with the most severe drought occurring in summer and autumn.The basin showed a slow decreasing trend in drought during the study period.Regarding spatial distribution of monthly drought frequency and trend of VHI,the mean of the frequency was 13.00%,and 78.00%had a drought frequency of 10.00%–20.00%,with moderate drought generally prevailing.Regarding land use types,forest land,grassland,agricultural land,construction land,water body,and wasteland showed a descending order for the annual average VHI.VHI of each land use type was the lowest in summer and autumn,with pronounced seasonal characteristics.The uneven distribution of drought in the Yellow River Basin was primarily influenced by annual precipitation,solar-induced chlorophyll fluorescence,and relative humidity.VHI effectively quantified drought conditions at a regional scale and proved to be highly applicable in the Yellow River Basin.The results clarify the effectiveness of VHI for drought monitoring in the Yellow River Basin and can provide a reference for drought monitoring across the basin.
基金supported by the National Natural Science Foundation of China(62406345).
文摘Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to concentrate on iso-lated technical elements and are deficient in addressing the full spectrum of critical technologies and development needs in a systematic and integrative manner.Furthermore,the current suite of tools has not adequately addressed the challenge of bridging the gap between simulation and real-world deployment of algorithms.Therefore,a comprehensive solution must be developed that encompasses the entire IUSS development life-cycle.In this study,we present the RflySim ToolChain,which has been developed with the specific aim of facilitating the rapid development and validation of IUSSs.The RflySim ToolChain employs a model-based design(MBD)approach,integrating a modeling and simulation module,a lower reliable control mo-dule,and an upper swarm decision-making module.This compre-hensive integration encompasses the entire process,from mo-deling and simulation to testing and deployment,thereby enabling users to rapidly construct and validate IUSSs.The prin-cipal advantages of the RflySim ToolChain are as follows:it pro-vides a comprehensive solution that meets the full-stack devel-opment needs of IUSSs;the highly modular architecture and comprehensive software development kit(SDK)facilitate the automation of the entire IUSS development process.Further-more,the high-fidelity model design and reliable architecture solution ensure a seamless transition from simulation to real-world deployment,which is known as the simulation to reality(Sim2Real)process.This paper presents a series of case stu-dies that illustrate the effectiveness of the RflySim ToolChain in supporting the research and application of IUSSs.
基金supported by the National Natural Science Foundation of China(Nos.52003297 and 22302233)the Open Project of State Key Laboratory of Chemical Safety(No.SKLCS-2024020)+2 种基金the National Key R&D Program of China(Nos.2022YFB3205501 and 2022YFB3205504)and the Fundamental Research Funds for the Central Universities(No.24CX02014A)the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China).
文摘Based on the unique catalytic properties of precious metals,the introduction of precious metals into metal oxide semiconductors will greatly improve the gas-sensitive properties of materials.As a new type of porous material,metal–organic frameworks(MOF)can be used for gas separation and adsorption due to their adjustable pore size and acceptable thermal stability.In this work,the ZIF-71 MOF was synthesized on CuO nanofibers doped with different concentrations of Ru to form a Ru–CuO@ZIF-71 nanocomposite sensor,which was then used for H_(2)S detection.The sensor shows sensitivity to trace amounts of H_(2)S gas(100 ppb),and the response is greatly enhanced at the optimal Ru doping ratio and operating temperature.The introduction of the ZIF-71 membrane can significantly increase the selectivity of the sensor while further improving the sensitivity.Finally,the possible sensing mechanism of the Ru–CuO@ZIF-71 sensor was explored.The enhancement of the H_(2)S gas sensing properties may be attributed to the catalysis of Ru and the formation of the Schottky junction at the Ru–CuO interface.Besides,the calculation based on density functional theory reveals enhanced adsorption capacities of CuO for H_(2)S after Ru doping.Therefore,the Ru–CuO@ZIF-71 sensor has strong application potential in exhaled gas detection and portable detection of H_(2)S gas in industrial environments.