期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Model-based Tracking for Agent-based Control Systems in the Case of Sensor Failures 被引量:1
1
作者 R.P.Yadav P.V.Varde +2 位作者 P.S.V.Nataraj P.Fatnani C.P.Navathe 《International Journal of Automation and computing》 EI 2012年第6期561-569,共9页
The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the ca... The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the case of sensor/actuator failures.The method uses model-based tracking concept to relax the demand on sensor data.The condition for successful operation of the stated scheme is derived,and the concept is demonstrated through simulation by applying it to the model of microtron,transport line-1 and booster of indus accelerator.The results show that this approach is very effective in transport line control during sensor/actuator failures. 展开更多
关键词 AGENT agent-based control model-based tracking transport line control artificial intelligence(AI).
原文传递
Tip-and Laser-based 3D Nanofabrication in Extended Macroscopic Working Areas
2
作者 Ingo Ortlepp Thomas Frohlich +26 位作者 Roland FuBl Johann Reger Christoph Schaffel Stefan Sinzinger Steffen Strehle ReneTheska Lena Zentner Jens-Peter Zollner Ivo WRangelow Carsten Reinhardt Tino Hausotte Xinrui Cao Oliver Dannberg Florian Fern David Fischer Stephan Gorges Martin Hofmann Johannes Kirchner Andreas Meister Taras Sasiuk Ralf Schienbein Shraddha Supreeti Laura Mohr-Weidenfeller Christoph Weise Christoph Reuter Jaqueline Stauffenberg Eberhard Manske 《Nanomanufacturing and Metrology》 2021年第3期132-148,共17页
The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventiona... The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies.This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable:custom design and solutions for specific applications will dominate future development(Fritze in:Panning EM,Liddle JA(eds)Novel patterning technologies.International society for optics and photonics.SPIE,Bellingham,2021.https://doi.org/10.1117/12.2593229).For this reason,new aspects arise for future lithography,which is why enormous effort has been directed to the development of alternative fabrication technologies.Yet,the technologies emerging from this process,which are promising for coping with the current resolution and accuracy challenges,are only demonstrated as a proof-of-concept on a lab scale of several square micrometers.Such scale is not adequate for the requirements of modern lithography;therefore,there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies.Similar challenges arise because of the technical progress in various other fields,realizing new and unique functionalities based on nanoscale effects,e.g.,in nanophotonics,quantum computing,energy harvesting,and life sciences.Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks,which are available at the Technische Universitiit Ilmenau in the form of nanopositioning and nanomeasuring(NPM)machines.With this equipment,the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters. 展开更多
关键词 Nanomeasuring NANOPOSITIONING NANOMANUFACTURING Scale-spanning Tip-based Laser-based Nanofabrication
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部