期刊文献+
共找到243,781篇文章
< 1 2 250 >
每页显示 20 50 100
Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV 被引量:15
1
作者 Cheng Peng Yue Bai +3 位作者 Xun Gong Qingjia Gao Changjun Zhao Yantao Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期56-64,共9页
This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV.... This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller (BSMC) with adaptive radial basis function neural network (RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 Adaptive control systems Aircraft control Approximation algorithms Attitude control BACKSTEPPING Controllers Functions Learning algorithms Radial basis function networks Robust control Robustness (control systems) Sliding mode control Uncertainty analysis
在线阅读 下载PDF
The DAO to MetaControl for MetaSystems in Metaverses:The System of Parallel Control Systems for Knowledge Automation and Control Intelligence in CPSS 被引量:25
2
作者 Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1899-1908,共10页
An investigation and outline of MetaControl and DeControl in Metaverses for control intelligence and knowledge automation are presented.Prescriptive control with prescriptive knowledge and parallel philosophy is propo... An investigation and outline of MetaControl and DeControl in Metaverses for control intelligence and knowledge automation are presented.Prescriptive control with prescriptive knowledge and parallel philosophy is proposed as the starting point for the new control philosophy and technology,especially for computational control of metasystems in cyberphysical-social systems.We argue that circular causality,the generalized feedback mechanism for complex and purposive systems,should be adapted as the fundamental principle for control and management of metasystems with metacomplexity in metaverses.Particularly,an interdisciplinary approach is suggested for MetaControl and DeControl as a new form of intelligent control based on five control metaverses:MetaVerses,MultiVerses,InterVerses,TransVerse,and DeepVerses. 展开更多
关键词 MetaControl MetaSystems Metaverses CPSS DAO DeControl Prescriptive Control Parallel Control Computational Control Knowledge Automation Control Intelligence Parallel Intelligence
在线阅读 下载PDF
An Improved Repetitive-Control System Using a Complex-Coefficient Filter 被引量:1
3
作者 Qicheng Mei Jinhua She +1 位作者 Fei Long Yanjun Shen 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期282-284,共3页
Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter us... Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency. 展开更多
关键词 improved repetitive controller irc periodic signals repetitive control system complex coefficient filter tracking performance conventional repetitive controller crc periodic signal enhance tracking performance
在线阅读 下载PDF
Constrained Networked Predictive Control for Nonlinear Systems Using a High-Order Fully Actuated System Approach 被引量:1
4
作者 Yi Huang Guo-Ping Liu +1 位作者 Yi Yu Wenshan Hu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期478-480,共3页
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv... Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system. 展开更多
关键词 optimal control problem constrained networked predictive control strategy Performance Optimization present upper bound Nonlinear Systems NOISES Constrained Networked Predictive Control High Order Fully Actuated Systems
在线阅读 下载PDF
A thrust estimation and control method of an adaptive cycle engine based on improved MFAC algorithm
5
作者 Xin ZHOU Wenjuan CHEN +2 位作者 Jinquan HUANG Jingtian LIU Feng LU 《Chinese Journal of Aeronautics》 2025年第5期182-201,共20页
The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To addre... The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation. 展开更多
关键词 Adaptivecycle engine Direct thrust control Model-free adaptive control Sliding mode control Thrust estimation
原文传递
Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit 被引量:1
6
作者 Yun Zhang Zifen Han +2 位作者 Biao Tian Ning Chen Yi Fan 《Energy Engineering》 EI 2025年第1期167-184,共18页
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,... The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units. 展开更多
关键词 Photovoltaic power suppression hybrid energy storage unit variationalmodal decomposition fuzzy control power distribution control
在线阅读 下载PDF
Robust Attitude Control for Reusable Launch Vehicles Based on Fractional Calculus and Pigeon-inspired Optimization 被引量:5
7
作者 Qiang Xue Haibin Duan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期89-97,共9页
In this paper, a robust attitude control system based on fractional order sliding mode control and dynamic inversion approach is presented for the reusable launch vehicle RLV during the reentry phase. By introducing t... In this paper, a robust attitude control system based on fractional order sliding mode control and dynamic inversion approach is presented for the reusable launch vehicle RLV during the reentry phase. By introducing the fractional order sliding surface to replace the integer order one, we design robust outer loop controller to compensate the error introduced by inner loop controller designed by dynamic inversion approach. To take the uncertainties of aerodynamic parameters into account, stochastic robustness design approach based on the Monte Carlo simulation and Pigeon-inspired optimization is established to increase the robustness of the controller. Some simulation results are given out which indicate the reliability and effectiveness of the attitude control system. © 2014 Chinese Association of Automation. 展开更多
关键词 Attitude control Calculations Communication satellites Control systems Intelligent systems Launch vehicles LAUNCHING Monte Carlo methods Nonlinear control systems REUSABILITY Reusable rockets Robustness (control systems) Sliding mode control Stochastic systems Vehicles
在线阅读 下载PDF
Temperature control for liquid-cooled fuel cells based on fuzzy logic and variable-gain generalized supertwisting algorithm
8
作者 CHEN Lin JIA Zhi-huan +1 位作者 DING Tian-wei GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1596-1605,共10页
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe... The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed. 展开更多
关键词 liquid-cooled fuel cell temperature control generalized supertwisting algorithm fuzzy control equilibrium optimizer
在线阅读 下载PDF
Application of feedforward and recurrent neural networks for model-based control systems
9
作者 Marek Krok Wojciech P.Hunek +2 位作者 Szymon Mielczarek Filip Buchwald Adam Kolender 《Control Theory and Technology》 2025年第1期91-104,共14页
In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the l... In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application. 展开更多
关键词 Predictive control Linear-quadratic control Inverse problems Feedforward network Recurrent neural network OPTIMIZATION
原文传递
Emission control status and future perspectives of diesel trucks in China
10
作者 Shihai Zhang Mingliang Fu +2 位作者 Hefeng Zhang Hang Yin Yan Ding 《Journal of Environmental Sciences》 2025年第2期702-713,共12页
Chinese diesel trucks are the main contributors to NOx and particulate matter(PM)vehicle emissions.An increase in diesel trucks could aggravate air pollution and damage human health.The Chinese government has recently... Chinese diesel trucks are the main contributors to NOx and particulate matter(PM)vehicle emissions.An increase in diesel trucks could aggravate air pollution and damage human health.The Chinese government has recently implemented a series of emission control technologies andmeasures for air quality improvement.This paper summarizes recent control technologies and measures for diesel truck emissions in China and introduces the comprehensive application of control technologies and measures in Beijing-Tianjin-Hebei and surrounding regions.Remote onlinemonitoring technology has been adopted according to the China VI standard for heavy-duty diesel trucks,and control measures such as transportation structure adjustment and heavy pollution enterprise classification control continue to support the battle action plan for pollution control.Perspectives and suggestions are provided for promoting pollution control and supervision of diesel truck emissions:adhere to the concept of overall management and control,vigorously promote the application of systematic and technological means in emission monitoring,continuously facilitate cargo transportation structure adjustment and promote new energy freight vehicles.This paper aims to accelerate the implementation of control technologies and measures throughout China.China is endeavouring to control diesel truck exhaust pollution.China is willing to cooperate with the world to protect the global ecological environment. 展开更多
关键词 Air quality Diesel truck emissions Emission control technology Control measures
原文传递
Control Methods Study of Rail-Mounted W-Beam Guardrail Inspection Robot
11
作者 CAO Jingming WANG Huifeng +4 位作者 ZHANG Chenlu GAO Rong WANG Xiaoyan HUANG He GUAN Limin 《Wuhan University Journal of Natural Sciences》 2025年第4期379-391,共13页
To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses ve... To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses verify the robot's structural reliability and driving feasibility.Based on the leader-follower model,a triangular collaborative tracking model is developed,and a linear time-varying model predictive controll(LTV-MPC)is designed to achieve smooth and precise collaborative control.For obstacle crossing,an acceleration reference model and a gradient-based adaptive law are proposed,leading to a model reference adaptive controll(MRAC)that effectively suppresses vibrations and ensures synchronous control.Simulation results show that the MPC achieves a 0.415%overshoot and a 0.344 m steady-state accuracy,while also reducing the intensity of speed fluctuations by 35%.The MRAC ensures smooth obstacle-crossing speeds and adaptive strategy switching,validating the reliability and practicality of the rail-mounted robot under complex working conditions. 展开更多
关键词 rail-mounted inspection robot mechanical analysis model predictive control(MPC) model reference adaptive control(MRAC)
原文传递
Frequency-fixed grid-forming control for less-dynamic and safer renewable power systems
12
作者 Yong Min Zhenyu Lei +4 位作者 Lei Chen Fei Xu Boyuan Zhao Zongxiang Lu Ling Hao 《iEnergy》 2025年第4期219-234,共16页
Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy... Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy storage.In this paper,we challenge the traditional approach of emulating a synchronous generator by proposing a frequency-fixed GFM control strategy.The CIG endeavors to regulate itself as a constant voltage source without control dynamics due to its capability limitation,denoted as the frequency-fixed zone.With the proposed strategy,the system frequency is almost always fixed at its rated value,achieving system active power balance independent of frequency,and intentional power flow adjustments are implemented through direct phase angle control.This approach significantly reduces the frequency dynamics and safety issues associated with frequency variations.Furthermore,synchronization dynamics are significantly diminished,and synchronization stability is enhanced.The proposed strategy has the potential to realize a renewable power system with a fixed frequency and robust stability. 展开更多
关键词 Converter interfaced generation grid-forming control frequency stability active power control synchronization stability renewable power system
在线阅读 下载PDF
Enhanced Tube-Based Event-Triggered Stochastic Model Predictive Control With Additive Uncertainties
13
作者 Chenxi Gu Xinli Wang +3 位作者 Kang Li Xiaohong Yin Shaoyuan Li Lei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期596-605,共10页
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a... This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control. 展开更多
关键词 Event-triggered mechanism HEATING ventilation and air conditioning(HVAC)control probabilistic reachable set stochastic model predictive control
在线阅读 下载PDF
Adaptative Pressure Estimation and Control Architecture for Integrated Electro-Hydraulic Brake System
14
作者 Zhenhai Gao Yi Yang +3 位作者 Guoying Chen Liang Yuan Jianguang Zhou Jie Zhang 《Chinese Journal of Mechanical Engineering》 2025年第1期353-381,共29页
The current research of master cylinder pressure estimation mainly relies on hydraulic characteristic or vehicle dynamics.But they are not independently applicable to any environment and have their own scope of applic... The current research of master cylinder pressure estimation mainly relies on hydraulic characteristic or vehicle dynamics.But they are not independently applicable to any environment and have their own scope of application.In addition,about the master cylinder pressure control,there are few studies that can simultaneously balance pressure building accuracy,speed,and prevent pressure overshoot and jitter.In this paper,an adaptative fusion method based on electro-hydraulic characteristic and vehicle mode is proposed to estimate the master cylinder pressure.The fusion strategy is mainly based on the prediction performance of two algorithms under different vehicle speeds,pressures,and ABS states.Apart from this,this article also includes real-time prediction of the friction model based on RLS to improve the accuracy of the electro-hydraulic mode.In order to simultaneously balance pressure control accuracy,response speed,and prevent overshoot and jitter,this article proposes an adaptative LQR controller for MC pressure control which uses fuzzy-logic controller to adjust the weights of LQR controller based on target pressure and difference compared with actual pressure.Through mode-in-loop and hardware-in-loop tests in ramp,step and sinusoidal response,the whole estimation and control system is verified based on real hydraulic system and the performance is satisfactory under these scenes.This research proposes an adaptative pressure estimation and control architecture for integrated electro-hydraulic brake system which could eliminate pressure sensors in typical scenarios and ensure the comprehensive performance of pressure control. 展开更多
关键词 Brake-by-wire(BBW) MC pressure estimation MC pressure control Integrated electro-hydraulic brake system(IEHB) Adaptative sliding mode observer(ASMO) Adaptative LQR controller
在线阅读 下载PDF
Enhanced Fractional-Order Nonsingular Terminal Sliding Mode Control for Fully Submerged Hydrofoil Craft with Actuator Saturation
15
作者 Hongmin Niu Shiquan Zhao +1 位作者 Cristina IMuresan Clara Mihaela Ionescu 《哈尔滨工程大学学报(英文版)》 2025年第6期1264-1278,共15页
This study introduces an enhanced adaptive fractional-order nonsingular terminal sliding mode controller(AFONTSMC)tailored for stabilizing a fully submerged hydrofoil craft(FSHC)under external disturbances,model uncer... This study introduces an enhanced adaptive fractional-order nonsingular terminal sliding mode controller(AFONTSMC)tailored for stabilizing a fully submerged hydrofoil craft(FSHC)under external disturbances,model uncertainties,and actuator saturation.A novel nonlinear disturbance observer modified by fractional-order calculus is proposed for flexible and less conservative estimation of lumped disturbances.An enhanced adaptive fractional-order nonsingular sliding mode scheme augmented by disturbance estimation is also introduced to improve disturbance rejection.This controller design only necessitates surpassing the estimation error rather than adhering strictly to the disturbance upper bound.Additionally,an adaptive fast-reaching law with a hyperbolic tangent function is incorporated to enhance the responsiveness and convergence rates of the controller,thereby reducing chattering.Furthermore,an auxiliary actuator compensator is developed to address saturation effects.The resultant closed system of the FSHC with the designed controller is globally asymptotically stable. 展开更多
关键词 Fully submerged hydrofoil craft Longitudinal motion control Fractional-order terminal sliding mode control Disturbance observer Saturation compensation
在线阅读 下载PDF
Attitude control of flexible satellite via three-dimensional magnetically suspended wheel
16
作者 J.TAYEBI Yingjie CHEN +1 位作者 Ti CHEN Shiyuan JIA 《Applied Mathematics and Mechanics(English Edition)》 2025年第3期555-572,共18页
This paper proposes an attitude control strategy for a flexible satellite equipped with an orthogonal cluster of three-dimensional(3D)magnetically suspended wheels(MSWs).The mathematical model for the satellite incorp... This paper proposes an attitude control strategy for a flexible satellite equipped with an orthogonal cluster of three-dimensional(3D)magnetically suspended wheels(MSWs).The mathematical model for the satellite incorporating flexible appendages and an orthogonal cluster of magnetically suspended reaction wheel actuators is initially developed.After that,an adaptive attitude controller is designed with a switching surface of variable structure,an adaptive law for estimating inertia matrix uncertainty,and a fuzzy disturbance observer for estimating disturbance torques.Additionally,a Moore-Penrose-based steering law is proposed to derive the tilt angle commands of the orthogonal configuration of the 3D MSW to follow the designed control signal.Finally,numerical simulations are presented to validate the effectiveness of the proposed control strategy. 展开更多
关键词 flexible satellite three-dimensional(3D)magnetically suspended wheel(MSW) attitude control adaptive control disturbance observer
在线阅读 下载PDF
Joint Probabilistic Scheduling and Resource Allocation for Wireless Networked Control Systems
17
作者 Meng Zheng Lei Zhang Wei Liang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期258-260,共3页
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the... Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works. 展开更多
关键词 subsystem activation probability linear quadratic gaussian control cost number uplink repetitions wireless networked control systems joint probabilistic scheduling resource allocation method psra linear quadratic gaussian lqg G based activation probability subsystems
在线阅读 下载PDF
A Tutorial on Quantized Feedback Control
18
作者 Minyue Fu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期5-17,共13页
In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of ... In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements. 展开更多
关键词 Consensus control high-precision control networked control quantized estimation quantized feedback control robust control
在线阅读 下载PDF
Automatic landing of fixed-wing aircraft with constrained algebraic model predictive control
19
作者 Talha Ulukır Ufuk Dursun İlkerÜstoğlu 《Control Theory and Technology》 2025年第4期688-701,共14页
This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,t... This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics. 展开更多
关键词 Automatic landing Model predictive control AUTOPILOT Auto-flight Algebraic model predictive control
原文传递
Path Tracking Robust Control Strategy for Intelligent Vehicle Based on Force-Driven with MPC and H_(∞)
20
作者 Qiangqiang Yao Yiheng Shi +1 位作者 Peng Hang Ying Tian 《Chinese Journal of Mechanical Engineering》 2025年第5期351-361,共11页
Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature ... Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature conditions.Therefore,a path tracking robust control strategy based on force-driven H_(∞)and MPC is proposed.To fully exploit the nonlinear dynamics characteristics of tires,a force-driven state space model of a path tracking system based on a linear time-varying tire model is established;the H_(∞)and MPC methods are used to design a robust controller.Considering disturbance and system state constraints,the robust control constraint model based on LMI is established.Finally,the proposed controller is validated through joint simulations using CarSim and MATLAB.The results show that the maximum lateral deviation is reduced by 17.07%,and the maximum course angle deviation is reduced by 13.04%under large curvature disturbance conditions.The maximum lateral deviation is reduced by 27.85%,and the maximum course angle deviation is reduced by 31.17%under conditions of uncertain road adhesion coefficients.Based on the controller’s performance,the proposed controller effectively mitigates modeling errors,parameter uncertainties,and curvature disturbances. 展开更多
关键词 Intelligent vehicles Model predictive control Robust control Path tracking Force-driven
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部