The influence of Al content(0.0053,0.0171,and 0.0578 wt.%)on the modification behavior of non-metallic inclusions in 20CrMoVTiB steel treated with rare earth elements was studied through high-temperature experiments a...The influence of Al content(0.0053,0.0171,and 0.0578 wt.%)on the modification behavior of non-metallic inclusions in 20CrMoVTiB steel treated with rare earth elements was studied through high-temperature experiments and thermodynamic simulation.The results showed that the modification products varied with the Al content in steel under 0.01 wt.%of Ce addition.The formation sequence of typical rare earth inclusions in steel with the increase in Al content was Ce_(2)O_(3)→CeAlO_(3)→CeAl_(11)O_(18),and the final stable products were highly Al content dependent.When the Al content was 0.0053 wt.%,the stable phase in steel was Ce2O3;while the[Al]reached 0.0171 wt.%,the stable phase became CeA1O_(3).As the A1 content reached 0.0578 wt.%,CeAl_(11)O_(18) became the stable phase.As a result,increasing the Al content could inhibit the precipitation of Ce_(2)O_(3) inclusions in steel while promote the formation of CeAIO3 and CeAl_(11)O_(18) inclusions.In addition,both Ca treatment and Ce treatment could effectively refine the size of inclusions in steel by changing their types.However,the feeding amount of Ca wire into molten steel should be appropriately reduced under the condition of adding Ce simultaneously,which is expected to be beneficial for an improved Ce treatment effect.展开更多
基金This research was funded by National Natural Science Foundation of China(Grant No.51874033)Beijing Natural Science Foundation(Grant No.2182038)to Hai-yan Tang.
文摘The influence of Al content(0.0053,0.0171,and 0.0578 wt.%)on the modification behavior of non-metallic inclusions in 20CrMoVTiB steel treated with rare earth elements was studied through high-temperature experiments and thermodynamic simulation.The results showed that the modification products varied with the Al content in steel under 0.01 wt.%of Ce addition.The formation sequence of typical rare earth inclusions in steel with the increase in Al content was Ce_(2)O_(3)→CeAlO_(3)→CeAl_(11)O_(18),and the final stable products were highly Al content dependent.When the Al content was 0.0053 wt.%,the stable phase in steel was Ce2O3;while the[Al]reached 0.0171 wt.%,the stable phase became CeA1O_(3).As the A1 content reached 0.0578 wt.%,CeAl_(11)O_(18) became the stable phase.As a result,increasing the Al content could inhibit the precipitation of Ce_(2)O_(3) inclusions in steel while promote the formation of CeAIO3 and CeAl_(11)O_(18) inclusions.In addition,both Ca treatment and Ce treatment could effectively refine the size of inclusions in steel by changing their types.However,the feeding amount of Ca wire into molten steel should be appropriately reduced under the condition of adding Ce simultaneously,which is expected to be beneficial for an improved Ce treatment effect.