期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Comparison of Missing Data Imputation Methods in Time Series Forecasting 被引量:3
1
作者 Hyun Ahn Kyunghee Sun Kwanghoon Pio Kim 《Computers, Materials & Continua》 SCIE EI 2022年第1期767-779,共13页
Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.I... Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.In this study,we evaluate and compare the effects of imputationmethods for estimating missing values in a time series.Our approach does not include a simulation to generate pseudo-missing data,but instead perform imputation on actual missing data and measure the performance of the forecasting model created therefrom.In an experiment,therefore,several time series forecasting models are trained using different training datasets prepared using each imputation method.Subsequently,the performance of the imputation methods is evaluated by comparing the accuracy of the forecasting models.The results obtained from a total of four experimental cases show that the k-nearest neighbor technique is the most effective in reconstructing missing data and contributes positively to time series forecasting compared with other imputation methods. 展开更多
关键词 Missing data imputation method time series forecasting LSTM
在线阅读 下载PDF
Deep Learning-Based Action Classification Using One-Shot Object Detection 被引量:1
2
作者 Hyun Yoo Seo-El Lee Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2023年第8期1343-1359,共17页
Deep learning-based action classification technology has been applied to various fields,such as social safety,medical services,and sports.Analyzing an action on a practical level requires tracking multiple human bodie... Deep learning-based action classification technology has been applied to various fields,such as social safety,medical services,and sports.Analyzing an action on a practical level requires tracking multiple human bodies in an image in real-time and simultaneously classifying their actions.There are various related studies on the real-time classification of actions in an image.However,existing deep learning-based action classification models have prolonged response speeds,so there is a limit to real-time analysis.In addition,it has low accuracy of action of each object ifmultiple objects appear in the image.Also,it needs to be improved since it has a memory overhead in processing image data.Deep learning-based action classification using one-shot object detection is proposed to overcome the limitations of multiframe-based analysis technology.The proposed method uses a one-shot object detection model and a multi-object tracking algorithm to detect and track multiple objects in the image.Then,a deep learning-based pattern classification model is used to classify the body action of the object in the image by reducing the data for each object to an action vector.Compared to the existing studies,the constructed model shows higher accuracy of 74.95%,and in terms of speed,it offered better performance than the current studies at 0.234 s per frame.The proposed model makes it possible to classify some actions only through action vector learning without additional image learning because of the vector learning feature of the posterior neural network.Therefore,it is expected to contribute significantly to commercializing realistic streaming data analysis technologies,such as CCTV. 展开更多
关键词 Human action classification artificial intelligence deep neural network pattern analysis video analysis
在线阅读 下载PDF
Multiple-Object Tracking Using Histogram Stamp Extraction in CCTV Environments
3
作者 Ye-Yeon Kang Geon Park +1 位作者 Hyun Yoo Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2023年第12期3619-3635,共17页
Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an image.This technology may be effective in identifying the sa... Object tracking,an important technology in the field of image processing and computer vision,is used to continuously track a specific object or person in an image.This technology may be effective in identifying the same person within one image,but it has limitations in handling multiple images owing to the difficulty in identifying whether the object appearing in other images is the same.When tracking the same object using two or more images,there must be a way to determine that objects existing in different images are the same object.Therefore,this paper attempts to determine the same object present in different images using color information among the unique information of the object.Thus,this study proposes a multiple-object-tracking method using histogram stamp extraction in closed-circuit television applications.The proposed method determines the presence or absence of a target object in an image by comparing the similarity between the image containing the target object and other images.To this end,a unique color value of the target object is extracted based on its color distribution in the image using three methods:mean,mode,and interquartile range.The Top-N accuracy method is used to analyze the accuracy of each method,and the results show that the mean method had an accuracy of 93.5%(Top-2).Furthermore,the positive prediction value experimental results show that the accuracy of the mean method was 65.7%.As a result of the analysis,it is possible to detect and track the same object present in different images using the unique color of the object.Through the results,it is possible to track the same object that can minimize manpower without using personal information when detecting objects in different images.In the last response speed experiment,it was shown that when the mean was used,the color extraction of the object was possible in real time with 0.016954 s.Through this,it is possible to detect and track the same object in real time when using the proposed method. 展开更多
关键词 Data mining deep learning object detection object tracking real-time object detection multiple object image processing
在线阅读 下载PDF
SlowFast Based Real-Time Human Motion Recognition with Action Localization
4
作者 Gyu-Il Kim Hyun Yoo Kyungyong Chung 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2135-2152,共18页
Artificial intelligence is increasingly being applied in the field of video analysis,particularly in the area of public safety where video surveillance equipment such as closed-circuit television(CCTV)is used and auto... Artificial intelligence is increasingly being applied in the field of video analysis,particularly in the area of public safety where video surveillance equipment such as closed-circuit television(CCTV)is used and automated analysis of video information is required.However,various issues such as data size limitations and low processing speeds make real-time extraction of video data challenging.Video analysis technology applies object classification,detection,and relationship analysis to continuous 2D frame data,and the various meanings within the video are thus analyzed based on the extracted basic data.Motion recognition is key in this analysis.Motion recognition is a challenging field that analyzes human body movements,requiring the interpretation of complex movements of human joints and the relationships between various objects.The deep learning-based human skeleton detection algorithm is a representative motion recognition algorithm.Recently,motion analysis models such as the SlowFast network algorithm,have also been developed with excellent performance.However,these models do not operate properly in most wide-angle video environments outdoors,displaying low response speed,as expected from motion classification extraction in environments associated with high-resolution images.The proposed method achieves high level of extraction and accuracy by improving SlowFast’s input data preprocessing and data structure methods.The input data are preprocessed through object tracking and background removal using YOLO and DeepSORT.A higher performance than that of a single model is achieved by improving the existing SlowFast’s data structure into a frame unit structure.Based on the confusion matrix,accuracies of 70.16%and 70.74%were obtained for the existing SlowFast and proposed model,respectively,indicating a 0.58%increase in accuracy.Comparing detection,based on behavioral classification,the existing SlowFast detected 2,341,164 cases,whereas the proposed model detected 3,119,323 cases,which is an increase of 33.23%. 展开更多
关键词 Artificial intelligence convolutional neural network video analysis human action recognition skeleton extraction
在线阅读 下载PDF
Abnormal Behavior Detection Using Deep-Learning-Based Video Data Structuring
5
作者 Min-Jeong Kim Byeong-Uk Jeon +1 位作者 Hyun Yoo Kyungyong Chung 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2371-2386,共16页
With the increasing number of digital devices generating a vast amount of video data,the recognition of abnormal image patterns has become more important.Accordingly,it is necessary to develop a method that achieves t... With the increasing number of digital devices generating a vast amount of video data,the recognition of abnormal image patterns has become more important.Accordingly,it is necessary to develop a method that achieves this task using object and behavior information within video data.Existing methods for detecting abnormal behaviors only focus on simple motions,therefore they cannot determine the overall behavior occurring throughout a video.In this study,an abnormal behavior detection method that uses deep learning(DL)-based video-data structuring is proposed.Objects and motions are first extracted from continuous images by combining existing DL-based image analysis models.The weight of the continuous data pattern is then analyzed through data structuring to classify the overall video.The performance of the proposed method was evaluated using varying parameter settings,such as the size of the action clip and interval between action clips.The model achieved an accuracy of 0.9817,indicating excellent performance.Therefore,we conclude that the proposed data structuring method is useful in detecting and classifying abnormal behaviors. 展开更多
关键词 Deep learning object detection abnormal behavior recognition CLASSIFICATION data structuring
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部