期刊文献+
共找到950篇文章
< 1 2 48 >
每页显示 20 50 100
Secure Computation Efficiency Resource Allocation for Massive MIMO-Enabled Mobile Edge Computing Networks 被引量:1
1
作者 Sun Gangcan Sun Jiwei +3 位作者 Hao Wanming Zhu Zhengyu Ji Xiang Zhou Yiqing 《China Communications》 SCIE CSCD 2024年第11期150-162,共13页
In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ... In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes. 展开更多
关键词 EAVESDROPPING massive multiple input multiple output mobile edge computing partial offloading secure computation efficiency
在线阅读 下载PDF
Research on digital twin technology and its application in intelligent operation and maintenance of highspeed railway infrastructure 被引量:1
2
作者 Yi liu Ping Li +3 位作者 Boqing Feng Peifen Pan Xueying Wang Qiliang Zhao 《Railway Sciences》 2024年第6期746-763,共18页
Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/method... Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/methodology/approach–This paper provides a comprehensive overview of the definition,connotations,characteristics and key technologies of digital twin technology.It also conducts a thorough analysis of the current state of digital twin applications,with a particular focus on the overall requirements for intelligent operation and maintenance of high-speed railway infrastructure.Using the Jinan Yellow River Bridge on the Beijing–Shanghai high-speed railway as a case study,the paper details the construction process of the twin system from the perspectives of system architecture,theoretical definition,model construction and platform design.Findings–Digital twin technology can play an important role in the whole life cycle management,fault prediction and condition monitoring in the field of high-speed rail operation and maintenance.Digital twin technology is of great significance to improve the intelligent level of high-speed railway operation and management.Originality/value–This paper systematically summarizes the main components of digital twin railway.The general framework of the digital twin bridge is given,and its application in the field of intelligent operation and maintenance is prospected. 展开更多
关键词 System architecture Digital twin Intelligent railway Beijing–shanghai high-speed railway Intelligent maintenance
在线阅读 下载PDF
Joint jammer selection and power optimization in covert communications against a warden with uncertain locations 被引量:1
3
作者 Zhijun Han Yiqing Zhou +3 位作者 Yu Zhang Tong-Xing Zheng Ling Liu Jinglin Shi 《Digital Communications and Networks》 2025年第4期1113-1123,共11页
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(... In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP. 展开更多
关键词 Covert communications Uncertain warden Jammer selection Power optimization Throughput maximization
在线阅读 下载PDF
Quantum Circuit Implementation and Resource Evaluation of Ballet‑p/k Under Grover’s Attack
4
作者 HONG Rui-Peng ZHANG Lei +3 位作者 PANG Chen-Xu LI Guo-Yuan DING Ding WANG Jian-Xin 《密码学报(中英文)》 北大核心 2025年第5期1178-1194,共17页
The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for thre... The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3. 展开更多
关键词 Grover’s algorithm quantum circuit Ballet family block ciphers quantum ripple-carry adder
在线阅读 下载PDF
Enhanced pneumonia detection:leveraging CLAHE in a mobile application
5
作者 Wilny Wilson P J D Dorathi Jayaseeli 《Biomedical Engineering Communications》 2025年第4期18-35,共18页
Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reduc... Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reducing mortality rates and optimizing healthcare resource allocation.Despite the importance of chest X-ray diagnosis,image analysis presents significant challenges,particularly in regions with limited medical expertise.This study addresses these challenges by proposing a computer-aided diagnosis system leveraging targeted image preprocessing and optimized deep learning techniques.Methods:We systematically evaluated contrast limited adaptive histogram equalization with varying clip limits for preprocessing chest X-ray images,demonstrating its effectiveness in enhancing feature visibility for diagnostic accuracy.Employing a comprehensive dataset of 5,863 X-ray images(1,583 pneumonia-negative,4,280 pneumonia-positive)collected from multiple healthcare facilities,we conducted a comparative analysis of transfer learning with pre-trained models including ResNet50v2,VGG-19,and MobileNetV2.Statistical validation was performed through 5-fold cross-validation.Results:Our results show that the contrast limited adaptive histogram equalization-enhanced approach with ResNet50v2 achieves 93.40%accuracy,outperforming VGG-19(84.90%)and MobileNetV2(89.70%).Statistical validation confirms the significance of these improvements(P<0.01).The development and optimization resulted in a lightweight mobile application(74 KB)providing rapid diagnostic support(1-2 s response time).Conclusion:The proposed approach demonstrates practical applicability in resource-constrained settings,balancing diagnostic accuracy with deployment efficiency,and offers a viable solution for computer-aided pneumonia diagnosis in areas with limited medical expertise. 展开更多
关键词 PNEUMONIA contrast limited adaptive histogram equalization deep learning mobile application chest X-ray transfer learning
在线阅读 下载PDF
Computation and wireless resource management in 6G space-integrated-ground access networks
6
作者 Ning Hui Qian Sun +2 位作者 Lin Tian Yuanyuan Wang Yiqing Zhou 《Digital Communications and Networks》 2025年第3期768-777,共10页
In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this neces... In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks. 展开更多
关键词 Space-integrated-ground Radio access network MEC-based computation resource management Mixed numerology-based wireless resource management
在线阅读 下载PDF
UAV clusters information geometry fusion positioning method with LEO satellite system
7
作者 Jiaqi LIU Yi ZHANG +3 位作者 Xingxing ZHU Chengkai Tang Zesheng DAN Yangyang LIU 《Chinese Journal of Aeronautics》 2025年第5期411-427,共17页
The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)den... The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)denial conditions.Therefore,this paper proposes a UAV Clusters Information Geometry Fusion Positioning(UC-IGFP)method using pseudoranges from the LEO satellites.A novel graph model for linking and computing between the UAV clusters and LEO satellites was established.By utilizing probability to describe the positional states of UAVs and sensor errors,the distributed multivariate Probability Fusion Cooperative Positioning(PF-CP)algorithm is proposed to achieve high-precision cooperative positioning and integration of the cluster.Criteria to select the centroid of the cluster were set.A new Kalman filter algorithm that is suitable for UAV clusters was designed based on the global benchmark and Riemann information geometry theory,which overcomes the discontinuity problem caused by the change of cluster centroids.Finally,the UC-IGFP method achieves the LEO continuous highprecision positioning of UAV clusters.The proposed method effectively addresses the positioning challenges caused by the strong direction of signal beams from LEO satellites and the insufficient constraint quantity of information sources at the edge nodes of the cluster.It significantly improves the accuracy and reliability of LEO-UAV cluster positioning.The results of comprehensive simulation experiments show that the proposed method has a 30.5%improvement in performance over the mainstream positioning methods,with a positioning error of 14.267 m. 展开更多
关键词 LEO positioning Information fusion UAVclusters Cooperative positioning Distributed
原文传递
Research on risk identification of railway subgrade deformation based on Bayesian and ICA theories
8
作者 Yi Liu Fengyan Yang +3 位作者 Hu Wang Xuanqi Wang Chengwen Wu Hongsheng Yu 《Railway Sciences》 2025年第6期711-728,共18页
Purpose–This paper conducts a joint analysis of monitoring data in the hidden danger areas of railway subgrade deformation using a data-driven method,thereby realizing the systematic risk identification of regional h... Purpose–This paper conducts a joint analysis of monitoring data in the hidden danger areas of railway subgrade deformation using a data-driven method,thereby realizing the systematic risk identification of regional hidden dangers.Design/methodology/approach–The paper proposes a regional systematic risk identification method based on Bayesian and independent component analysis(ICA)theories.Firstly,the Gray Wolf Optimization(GWO)algorithm is used to partition each group of monitoring data in the hidden danger area,so that the data distribution characteristics within each sub-block are similar.Then,a distributed ICA early warning model is constructed to obtain prior knowledge such as control limits and statistics of the area under normal conditions.For the online evaluation process,the input data is partitioned following the above-mentioned procedure and the ICA statistics of each sub-block are calculated.The Bayesian method is applied to fuse online parameters with offline parameters,yielding statistics under a specific confidence interval.These statistics are then compared with the control limits–specifically,checking whether they exceed the pre-set confidence parameters–thus realizing the systematic risk identification of the hidden danger area.Findings–Through simulation experiments,the proposed method can integrate prior knowledge such as control limits and statistics to effectively determine the overall stability status of the area,thereby realizing the systematic risk identification of the hidden danger area.Originality/value–The proposed method leverages Bayesian theory to fuse online process parameters with offline parameters and further compares them with confidence parameters,thereby effectively enhancing the utilization efficiency of monitoring data and the robustness of the analytical model. 展开更多
关键词 Bayesian theory Grey Wolf Algorithm Independent component analysis Railway subgrade Deformation analysis
在线阅读 下载PDF
Railway accident entity extraction method based on accident phase classification and mutual learning
9
作者 Zhibo Cheng Yanhua Wu +2 位作者 Zheqian Liu Yong Shi Ze Li 《Railway Sciences》 2025年第6期815-832,共18页
Purpose–This study aims to enhance the accuracy of key entity extraction from railway accident report texts and address challenges such as complex domain-specific semantics,data sparsity and strong inter-sentence sem... Purpose–This study aims to enhance the accuracy of key entity extraction from railway accident report texts and address challenges such as complex domain-specific semantics,data sparsity and strong inter-sentence semantic dependencies.A robust entity extraction method tailored for accident texts is proposed.Design/methodology/approach–This method is implemented through a dual-branch multi-task mutual learning model named R-MLP,which jointly performs entity recognition and accident phase classification.The model leverages a shared BERT encoder to extract contextual features and incorporates a sentence span indexing module to align feature granularity.A cross-task mutual learning mechanism is also introduced to strengthen semantic representation.Findings–R-MLP effectively mitigates the impact of semantic complexity and data sparsity in domain entities and enhances the model’s ability to capture inter-sentence semantic dependencies.Experimental results show that R-MLP achieves a maximum F1-score of 0.736 in extracting six types of key railway accident entities,significantly outperforming baseline models such as RoBERTa and MacBERT.Originality/value–This demonstrates the proposed method’s superior generalization and accuracy in domainspecific entity extraction tasks,confirming its effectiveness and practical value. 展开更多
关键词 Accident report texts Entity extraction Accident phase classification Multi-task model Mutual learning mechanism
在线阅读 下载PDF
MSDP:A Secure and Adaptive SDP Framework
10
作者 Zhang Zheng Ren Quan +2 位作者 Chen Hongchang Lu Jie Hu Yuxiang 《China Communications》 2025年第8期183-205,共23页
Software-Defined Perimeter(SDP)provides a logical perimeter to restrict access to services.However,due to the security vulnerability of a single controller and the programmability lack of a gateway,existing SDP is fac... Software-Defined Perimeter(SDP)provides a logical perimeter to restrict access to services.However,due to the security vulnerability of a single controller and the programmability lack of a gateway,existing SDP is facing challenges.To solve the above problems,we propose a flexible and secure SDP mechanism named Mimic SDP(MSDP).MSDP consists of endogenous secure controllers and a dynamic gateway.The controllers avoid single point failure by heterogeneity and redundancy.And the dynamic gateway realizes flexible forwarding in programmable data plane by changing the processing of packet construction and deconstruction,thereby confusing the potential adversary.Besides,we propose a Markov model to evaluate the security of our SDP framework.We implement a prototype of MSDP and evaluate it in terms of functionality,performance,and scalability in different groups of systems and languages.Evaluation results demonstrate that MSDP can provide a secure connection of 93.38%with a cost of 6.34%under reasonable configuration. 展开更多
关键词 endogenous security evaluation programmable data plane SDP
在线阅读 下载PDF
Unveiling the relationship between Fabry-Perot laser structures and optical field distribution via symbolic regression
11
作者 LI Wenqiang WU Min +2 位作者 LI Weijun HAO Meilan YU Lina 《Optoelectronics Letters》 2025年第3期149-154,共6页
In recent years,machine learning(ML)techniques have been shown to be effective in accelerating the development process of optoelectronic devices.However,as"black box"models,they have limited theoretical inte... In recent years,machine learning(ML)techniques have been shown to be effective in accelerating the development process of optoelectronic devices.However,as"black box"models,they have limited theoretical interpretability.In this work,we leverage symbolic regression(SR)technique for discovering the explicit symbolic relationship between the structure of the optoelectronic Fabry-Perot(FP)laser and its optical field distribution,which greatly improves model transparency compared to ML.We demonstrated that the expressions explored through SR exhibit lower errors on the test set compared to ML models,which suggests that the expressions have better fitting and generalization capabilities. 展开更多
关键词 machine learning optoelectronic deviceshoweverasblack optical field distributionwhich symbolic regression symbolic regression sr technique Fabry Perot laser discovering explicit symbolic relationship optical field distribution
原文传递
Optimized algorithm for image semantic segmentation compression algorithm in video surveillance scenarios
12
作者 ZHANG Yangmei ZHANG Xishan +1 位作者 ZHANG Shuo LI Jintao 《High Technology Letters》 2025年第2期194-203,共10页
In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant o... In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant objects such as background elements are often encoded due to environmental disturbances,resulting in the wastage of computational resources.Existing research on video coding efficiency optimization primarily focuses on optimizing encoding units during intra-frame or inter frame prediction after the generation of coding units,neglecting the optimization of video images before coding unit generation.To address this challenge,This work proposes an image semantic segmentation compression algorithm based on macroblock encoding,called image semantic segmentation compression algorithm based on macroblock encoding(ISSC-ME),which consists of three modules.(1)The semantic label generation module generates interesting object labels using a grid-based approach to reduce redundant coding of consecutive frames.(2)The image segmentation network module generates a semantic segmentation image using U-Net.(3)The macroblock coding module,is a block segmentation-based video encoding and decoding algorithm used to compress images and improve video transmission efficiency.Experimental results show that the proposed image semantic segmentation optimization algorithm can reduce the computational costs,and improve the overall accuracy by 1.00%and the mean intersection over union(IoU)by 1.20%.In addition,the proposed compression algorithm utilizes macroblock fusion,resulting in the image compression rate achieving 80.64%.It has been proven that the proposed algorithm greatly reduces data storage and transmission,and enables fast image compression processing at the millisecond level. 展开更多
关键词 macroblock encoding semantic segmentation segmentation compression
在线阅读 下载PDF
Block-gram:Mining knowledgeable features for efficiently smart contract vulnerability detection
13
作者 Xueshuo Xie Haolong Wang +3 位作者 Zhaolong Jian Yaozheng Fang Zichun Wang Tao Li 《Digital Communications and Networks》 2025年第1期1-12,共12页
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attack... Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on Ethereum.Effective vulnerability detection of large-scale smart contracts is critical,as attacks on smart contracts often cause huge economic losses.Since it is difficult to repair and update smart contracts,it is necessary to find the vulnerabilities before they are deployed.However,code analysis,which requires traversal paths,and learning methods,which require many features to be trained,are too time-consuming to detect large-scale on-chain contracts.Learning-based methods will obtain detection models from a feature space compared to code analysis methods such as symbol execution.But the existing features lack the interpretability of the detection results and training model,even worse,the large-scale feature space also affects the efficiency of detection.This paper focuses on improving the detection efficiency by reducing the dimension of the features,combined with expert knowledge.In this paper,a feature extraction model Block-gram is proposed to form low-dimensional knowledge-based features from bytecode.First,the metadata is separated and the runtime code is converted into a sequence of opcodes,which are divided into segments based on some instructions(jumps,etc.).Then,scalable Block-gram features,including 4-dimensional block features and 8-dimensional attribute features,are mined for the learning-based model training.Finally,feature contributions are calculated from SHAP values to measure the relationship between our features and the results of the detection model.In addition,six types of vulnerability labels are made on a dataset containing 33,885 contracts,and these knowledge-based features are evaluated using seven state-of-the-art learning algorithms,which show that the average detection latency speeds up 25×to 650×,compared with the features extracted by N-gram,and also can enhance the interpretability of the detection model. 展开更多
关键词 Smart contract Bytecode&opcode Knowledgeable features Vulnerability detection Feature contribution
在线阅读 下载PDF
Study on lifecycle management of high-speed rail catenary system under the MDD-APC theory
14
作者 Rui Li Ping Li +1 位作者 Chenkang Wu Xue Zhang 《Railway Sciences》 2025年第3期410-422,共13页
Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor i... Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor information sharing,disconnected business applications and insufficient intelligence throughout the lifecycle.This study aims to address these issues by applying building information modeling(BIM)technology to improve lifecycle management efficiency for HSR catenary systems.Design/methodology/approach-Based on the lifecycle management needs of catenary engineering,incorporating the intelligent HSR“Model-Data Driven,Axis-Plane Coordination”philosophy,this paper constructs a BIM-based lifecycle management framework for HSR catenary engineering.Findings-This study investigates the full-process lifecycle management of the catenary system across various stages of design,manufacture,construction and operation,exploring integrated BIM models and data transmission methods,along with key technologies for BIM model transmission,transformation and lightweighting.Originality/value-This study establishes a lossless information circulation and transmission system for HSR catenary lifecycle management.Multi-stage applications are verified through the construction of the Chongqing-Kunming High-Speed Railway,comprehensive advancing the intelligent promotion and highquality development of catenary engineering. 展开更多
关键词 Intelligent HSR Catenary system Lifecycle management Building information modeling(BIM) Data circulation
在线阅读 下载PDF
Polynomial Commitment in a Verkle Tree Based on a Non-Positional Polynomial Notation
15
作者 Kunbolat T.Algazy Kairat S.Sakan +1 位作者 Saule E.Nyssanbayeva Ardabek Khompysh 《Computers, Materials & Continua》 2025年第7期1581-1595,共15页
This paper examines the application of the Verkle tree—an efficient data structure that leverages commitments and a novel proof technique in cryptographic solutions.Unlike traditional Merkle trees,the Verkle tree sig... This paper examines the application of the Verkle tree—an efficient data structure that leverages commitments and a novel proof technique in cryptographic solutions.Unlike traditional Merkle trees,the Verkle tree significantly reduces signature size by utilizing polynomial and vector commitments.Compact proofs also accelerate the verification process,reducing computational overhead,which makes Verkle trees particularly useful.The study proposes a new approach based on a non-positional polynomial notation(NPN)employing the Chinese Remainder Theorem(CRT).CRT enables efficient data representation and verification by decomposing data into smaller,indepen-dent components,simplifying computations,reducing overhead,and enhancing scalability.This technique facilitates parallel data processing,which is especially advantageous in cryptographic applications such as commitment and proof construction in Verkle trees,as well as in systems with constrained computational resources.Theoretical foundations of the approach,its advantages,and practical implementation aspects are explored,including resistance to potential attacks,application domains,and a comparative analysis with existing methods based on well-known parameters and characteristics.An analysis of potential attacks and vulnerabilities,including greatest common divisor(GCD)attacks,approximate multiple attacks(LLL lattice-based),brute-force search for irreducible polynomials,and the estimation of their total number,indicates that no vulnerabilities have been identified in the proposed method thus far.Furthermore,the study demonstrates that integrating CRT with Verkle trees ensures high scalability,making this approach promising for blockchain systems and other distributed systems requiring compact and efficient proofs. 展开更多
关键词 Verkle tree Verkle tree commitment and proof non-positional polynomial notation(NPN) Chinese remainder theorem
在线阅读 下载PDF
Study on the optimal test parameters for vibration compaction based on the control of physical-mechanical indicators
16
作者 Zhongrui Chen Yanxi Xiong +3 位作者 Ronghui Yan Zhibo Cheng Taifeng Li Hongfu Tan 《Railway Sciences》 2025年第3期388-409,共22页
Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and ... Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction. 展开更多
关键词 High-speed railway subgrade Graded aggregates Vibratory compaction test Optimal vibration compaction parameters Physical-mechanical indicator
在线阅读 下载PDF
Multi-UAV Cooperative Target Search Based on Autonomous Connectivity in Uncertain Network Environment
17
作者 Wang Shan Sun Sheng +4 位作者 Liu Min Wang Yuwei Chen Yali Liu Danni Lin Fuhong 《China Communications》 2025年第8期257-280,共24页
Multiple UAVs cooperative target search has been widely used in various environments,such as emergency rescue and traffic monitoring.However,uncertain communication network among UAVs exhibits unstable links and rapid... Multiple UAVs cooperative target search has been widely used in various environments,such as emergency rescue and traffic monitoring.However,uncertain communication network among UAVs exhibits unstable links and rapid topological fluctuations due to mission complexity and unpredictable environmental states.This limitation hinders timely information sharing and insightful path decisions for UAVs,resulting in inefficient or even failed collaborative search.Aiming at this issue,this paper proposes a multi-UAV cooperative search strategy by developing a real-time trajectory decision that incorporates autonomous connectivity to reinforce multi-UAV collaboration and achieve search acceleration in uncertain search environments.Specifically,an autonomous connectivity strategy based on node cognitive information and network states is introduced to enable effective message transmission and adapt to the dynamic network environment.Based on the fused information,we formalize the trajectory planning as a multiobjective optimization problem by jointly considering search performance and UAV energy harnessing.A multi-agent deep reinforcement learning based algorithm is proposed to solve it,where the reward-guided real-time path is determined to achieve an energyefficient search.Finally,extensive experimental results show that the proposed algorithm outperforms existing works in terms of average search rate and coverage rate with reduced energy consumption under uncertain search environments. 展开更多
关键词 autonomous connectivity multi-agent reinforcement learning multi-UAV collaboration path planning target search
在线阅读 下载PDF
Communication delay-aware cooperative adaptive cruise control with dynamic network topologies——A convergence of communication and control
18
作者 Jihong Liu Yiqing Zhou Ling Liu 《Digital Communications and Networks》 2025年第1期191-199,共9页
Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed ... Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency. 展开更多
关键词 Communication delay Cooperative adaptive Cruise control Network topology String stability
在线阅读 下载PDF
Real-Time Facial Expression Recognition on Res-MobileNetV3
19
作者 Li Beibei Zhu Jiansheng +3 位作者 Li Suwen Dai Linlin Yan Zhiyuan Ma Liangde 《China Communications》 2025年第3期54-64,共11页
Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situ... Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications. 展开更多
关键词 artificial intelligence facial expression recognition MobileNetV3 ResNet SSH
在线阅读 下载PDF
Recent Implementations in Kylin 1.3:Improved Computational Efficiency of ab initio DMRG and a Spin-adapted Version of EC-MRCI
20
作者 Yinxuan Song Yingqi Tian +1 位作者 Yifan Cheng Haibo Ma 《Chinese Journal of Chemical Physics》 2025年第4期447-456,I0026,I0027,I0105,共13页
Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large... Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large conjugated molecules,and transition metal complex-es.To provide a user-friendly tool for studying such challeng-ing systems,our team developed Kylin 1.0[J.Comput.Chem.44,1316(2023)],an ab initio quantum chemistry program designed for efficient density matrix renormalization group(DMRG)and post-DMRG methods,enabling high-accuracy calculations with large active spaces.We have now further advanced the software with the release of Kylin 1.3,featuring optimized DMRG algorithms and an improved tensor contraction scheme in the diagonaliza-tion step.Benchmark calculations on the Mn_(4)CaO_(5)cluster demonstrate a remarkable speed-up of up to 16 fater than Kylin 1.0.Moreover,a more user-friendly and efficient algorithm[J.Chem.Theory Comput.17,3414(2021)]for sampling configurations from DMRG wavefunc-tion is implemented as well.Additionally,we have also implemented a spin-adapted version of the externally contracted multi-reference configuration interaction(EC-MRCI)method[J.Phys.Chem.A 128,958(2024)],further enhancing the program’s efficiency and accuracy for electron correlation calculations. 展开更多
关键词 Quantum chemistry program Density matrix renormalization group Strong correlation MULTI-REFERENCE
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部