期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An EfficientNet integrated ResNet deep network and explainable AI for breast lesion classification from ultrasound images
1
作者 Kiran Jabeen Muhammad Attique Khan +4 位作者 Ameer Hamza Hussain Mobarak Albarakati Shrooq Alsenan Usman Tariq Isaac Ofori 《CAAI Transactions on Intelligence Technology》 2025年第3期842-857,共16页
Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-a... Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-aided diagnosis system is highly required.Ultrasound is an important examination technique for breast cancer diagnosis due to its low cost.Recently,many learning-based techniques have been introduced to classify breast cancer using breast ultrasound imaging dataset(BUSI)datasets;however,the manual handling is not an easy process and time consuming.The authors propose an EfficientNet-integrated ResNet deep network and XAI-based framework for accurately classifying breast cancer(malignant and benign).In the initial step,data augmentation is performed to increase the number of training samples.For this purpose,three-pixel flip mathematical equations are introduced:horizontal,vertical,and 90°.Later,two pretrained deep learning models were employed,skipped some layers,and fine-tuned.Both fine-tuned models are later trained using a deep transfer learning process and extracted features from the deeper layer.Explainable artificial intelligence-based analysed the performance of trained models.After that,a new feature selection technique is proposed based on the cuckoo search algorithm called cuckoo search controlled standard error mean.This technique selects the best features and fuses using a new parallel zeropadding maximum correlated coefficient features.In the end,the selection algorithm is applied again to the fused feature vector and classified using machine learning algorithms.The experimental process of the proposed framework is conducted on a publicly available BUSI and obtained 98.4%and 98%accuracy in two different experiments.Comparing the proposed framework is also conducted with recent techniques and shows improved accuracy.In addition,the proposed framework was executed less than the original deep learning models. 展开更多
关键词 augmentation breast cancer CLASSIFICATION deep learning OPTIMIZATION ultrasound images
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部