期刊文献+
共找到868篇文章
< 1 2 44 >
每页显示 20 50 100
The computerized LASSI-BC Test versus the Standard LASSI-L Paper-and-Pencil Version in Community-Based-Samples
1
作者 Rosie E. Curiel Cid Alexandra Ortega +13 位作者 Ubbo Visser Marcela Kitaigorodsky D. Diane Zheng Diana Hincapie Kirsten Horne Crenshaw Ashleigh Beaulieu Brooke Bosworth Liz Gallardo Emory Neer Sofia Ramirez Elizabeth A. Crocco Mike Georgiou Efrosyni Sfakianaki David A. Loewenstein 《Advances in Alzheimer's Disease》 CAS 2024年第1期11-25,共15页
Proactive Semantic Interference (PSI) and failure to recover from PSI (frPSI), are novel constructs assessed by the LASSI-L. These measures are sensitive to cognitive changes in early Mild Cognitive Impairment (MCI) a... Proactive Semantic Interference (PSI) and failure to recover from PSI (frPSI), are novel constructs assessed by the LASSI-L. These measures are sensitive to cognitive changes in early Mild Cognitive Impairment (MCI) and preclinical AD determined by Aβ load using PET. The goal of this study was to compare a new computerized version of the LASSI-L (LASSI-Brief Computerized) to the standard paper-and-pencil version of the test. In this study, we examined 110 cognitively unimpaired (CU) older adults and 79 with amnestic MCI (aMCI) who were administered the paper-and-pencil form of the LASSI-L. Their performance was compared with 62 CU older adults and 52 aMCI participants examined using the LASSI-BC. After adjustment for covariates (degree of initial learning, sex, education, and language of evaluation) both the standard and computerized versions distinguished between aMCI and CU participants. The performance of CU and aMCI groups using either form was relatively commensurate. Importantly, an optimal combination of Cued B2 recall and Cued B1 intrusions on the LASSI-BC yielded an area under the ROC curve of .927, a sensitivity of 92.3% and specificity of 88.1%, relative to an area under the ROC curve of .815, a sensitivity of 72.5%, and a specificity of 79.1% obtained for the paper-and-pencil LASSI-L. Overall, the LASSI-BC was comparable, and in some ways, superior to the paper-and-pencil LASSI-L. Advantages of the LASSI-BC include a more standardized administration, suitability for remote assessment, and an automated scoring mechanism that can be verified by a built-in audio recording of responses. 展开更多
关键词 Mild Cognitive Impairment Proactive Semantic Interference LASSI-L Computerized Cognitive Assessment
暂未订购
Multi-Step Clustering of Smart Meters Time Series:Application to Demand Flexibility Characterization of SME Customers
2
作者 Santiago Bañales Raquel Dormido Natividad Duro 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期869-907,共39页
Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the... Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions. 展开更多
关键词 Electric load clustering load profiling smart meters machine learning data mining demand flexibility demand response
在线阅读 下载PDF
Artificial Circulation System Algorithm:A Novel Bio-Inspired Algorithm
3
作者 NerminÖzcan Semih Utku Tolga Berber 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期635-663,共29页
Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System A... Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm(ACSA).The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process.The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions,identified as classical benchmark functions.The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities.Furthermore,the paper evaluates ACSA in comparison to 64 metaheuristic methods that are derived from different approaches,including evolutionary,human,physics,and swarm-based.Subsequently,a sequence of statistical tests was undertaken to examine the superiority of the suggested algorithm in comparison to the 7 most widely used algorithms in the existing literature.The results show that the ACSA strategy can quickly reach the global optimum,avoid getting trapped in local optima,and effectively maintain a balance between exploration and exploitation.ACSA outperformed 42 algorithms statistically,according to post-hoc tests.It also outperformed 9 algorithms quantitatively.The study concludes that ACSA offers competitive solutions in comparison to popüler methods. 展开更多
关键词 BIO-INSPIRED EVOLUTIONARY HEURISTIC METAHEURISTIC OPTIMIZATION
在线阅读 下载PDF
Least Energy Solutions for the Fractional Schrodinger–Poisson System with General Potential and Nonlinearity
4
作者 ZHU Shaojuan HUANG Xianjiu 《数学进展》 北大核心 2025年第5期1031-1058,共28页
In this paper,we study the existence of least energy solutions for the following nonlinear fractional Schrodinger–Poisson system{(−∆)^(s)u+V(x)u+φu=f(u)in R^(3),(−∆)^(t)φ=u^(2)in R^(3),where s∈(3/4,1),t∈(0,1).Und... In this paper,we study the existence of least energy solutions for the following nonlinear fractional Schrodinger–Poisson system{(−∆)^(s)u+V(x)u+φu=f(u)in R^(3),(−∆)^(t)φ=u^(2)in R^(3),where s∈(3/4,1),t∈(0,1).Under some assumptions on V(x)and f,using Nehari–Pohozaev identity and the arguments of Brezis–Nirenberg,the monotonic trick and global compactness lemma,we prove the existence of a nontrivial least energy solution. 展开更多
关键词 fractional Schrodinger-Poisson system variational method Nehari-Pohozaev identity least energy solution
原文传递
An Intrusion Detection System Based on HiTar-2024 Dataset Generation from LOG Files for Smart Industrial Internet-of-Things Environment
5
作者 Tarak Dhaouadi Hichem Mrabet +1 位作者 Adeeb Alhomoud Abderrazak Jemai 《Computers, Materials & Continua》 2025年第3期4535-4554,共20页
The increasing adoption of Industrial Internet of Things(IIoT)systems in smart manufacturing is leading to raise cyberattack numbers and pressing the requirement for intrusion detection systems(IDS)to be effective.How... The increasing adoption of Industrial Internet of Things(IIoT)systems in smart manufacturing is leading to raise cyberattack numbers and pressing the requirement for intrusion detection systems(IDS)to be effective.However,existing datasets for IDS training often lack relevance to modern IIoT environments,limiting their applicability for research and development.To address the latter gap,this paper introduces the HiTar-2024 dataset specifically designed for IIoT systems.As a consequence,that can be used by an IDS to detect imminent threats.Likewise,HiTar-2024 was generated using the AREZZO simulator,which replicates realistic smart manufacturing scenarios.The generated dataset includes five distinct classes:Normal,Probing,Remote to Local(R2L),User to Root(U2R),and Denial of Service(DoS).Furthermore,comprehensive experiments with popular Machine Learning(ML)models using various classifiers,including BayesNet,Logistic,IBK,Multiclass,PART,and J48 demonstrate high accuracy,precision,recall,and F1-scores,exceeding 0.99 across all ML metrics.The latter result is reached thanks to the rigorous applied process to achieve this quite good result,including data pre-processing,features extraction,fixing the class imbalance problem,and using a test option for model robustness.This comprehensive approach emphasizes meticulous dataset construction through a complete dataset generation process,a careful labelling algorithm,and a sophisticated evaluation method,providing valuable insights to reinforce IIoT system security.Finally,the HiTar-2024 dataset is compared with other similar datasets in the literature,considering several factors such as data format,feature extraction tools,number of features,attack categories,number of instances,and ML metrics. 展开更多
关键词 Intrusion detection system industrial IoT machine learning security cyber-attacks DATASET
在线阅读 下载PDF
Mean-reverting diffusion model-enhanced acoustic-resolution photoacoustic microscopy for resolution enhancement:Toward optical resolution
6
作者 Yiyang Cao Shunfeng Lu +7 位作者 Cong Wan Yiguang Wang Xuan Liu Kangjun Guo Yubin Cao Zilong Li Qiegen Liu Xianlin Song 《Journal of Innovative Optical Health Sciences》 2025年第2期130-149,共20页
Acoustic-resolution photoacoustic microscopy(AR-PAM)suffers from degraded lateral resolution due to acoustic diffraction.Here,a resolution enhancement strategy for AR-PAM via a mean-reverting diffusion model was propo... Acoustic-resolution photoacoustic microscopy(AR-PAM)suffers from degraded lateral resolution due to acoustic diffraction.Here,a resolution enhancement strategy for AR-PAM via a mean-reverting diffusion model was proposed to achieve the transition from acoustic resolution to optical resolution.By modeling the degradation process from high-resolution image to low-resolution AR-PAM image with stable Gaussian noise(i.e.,mean state),a mean-reverting diffusion model is trained to learn prior information of the data distribution.Then the learned prior is employed to generate a high-resolution image from the AR-PAM image by iteratively sampling the noisy state.The performance of the proposed method was validated utilizing the simulated and in vivo experimental data under varying lateral resolutions and noise levels.The results show that an over 3.6-fold enhancement in lateral resolution was achieved.The image quality can be effectively improved,with a notable enhancement of∼66%in PSNR and∼480%in SSIM for in vivo data. 展开更多
关键词 Acoustic-resolution photoacoustic microscopy mean-reverting di®usion model gen-erative model resolution enhancement Noise insensitive
原文传递
Grouped machine learning methods for predicting rock mass parameters in a tunnel boring machine-driven tunnel based on fuzzy C-means clustering
7
作者 Ruirui Wang Yaodong Ni +1 位作者 Lingli Zhang Boyang Gao 《Deep Underground Science and Engineering》 2025年第1期55-71,共17页
To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine lea... To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine learning method for predicting rock mass parameters.An elaborate data set on field rock mass is collected,which also matches field TBM tunneling.Meanwhile,target stratum samples are divided into several clusters by fuzzy C-means clustering,and multiple submodels are trained by samples in different clusters with the input of pretreated TBM tunneling data and the output of rock mass parameter data.Each testing sample or newly encountered tunneling condition can be predicted by multiple submodels with the weight of the membership degree of the sample to each cluster.The proposed method has been realized by 100 training samples and verified by 30 testing samples collected from the C1 part of the Pearl Delta water resources allocation project.The average percentage error of uniaxial compressive strength and joint frequency(Jf)of the 30 testing samples predicted by the pure back propagation(BP)neural network is 13.62%and 12.38%,while that predicted by the BP neural network combined with fuzzy C-means is 7.66%and6.40%,respectively.In addition,by combining fuzzy C-means clustering,the prediction accuracies of support vector regression and random forest are also improved to different degrees,which demonstrates that fuzzy C-means clustering is helpful for improving the prediction accuracy of machine learning and thus has good applicability.Accordingly,the proposed method is valuable for predicting rock mass parameters during TBM tunneling. 展开更多
关键词 fuzzy C-means clustering machine learning rock mass parameter tunnel boring machine
原文传递
Architecture to Secure Electrical Control System in Cyber-Physical System
8
作者 Depeng Li 《Journal of Information Security》 2025年第1期149-157,共9页
It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle acc... It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope. 展开更多
关键词 ARCHITECTURE Control System FRAMEWORK
在线阅读 下载PDF
Quantum-Driven Spherical Fuzzy Model for Best Gate Security Systems
9
作者 Muhammad Amad Sarwar Yuezheng Gong +1 位作者 Sarah A.Alzakari Amel Ali Alhussan 《Computer Modeling in Engineering & Sciences》 2025年第6期3523-3555,共33页
Global security threats have motivated organizations to adopt robust and reliable security systems to ensure the safety of individuals and assets.Biometric authentication systems offer a strong solution.However,choosi... Global security threats have motivated organizations to adopt robust and reliable security systems to ensure the safety of individuals and assets.Biometric authentication systems offer a strong solution.However,choosing the best security system requires a structured decision-making framework,especially in complex scenarios involving multiple criteria.To address this problem,we develop a novel quantum spherical fuzzy technique for order preference by similarity to ideal solution(QSF-TOPSIS)methodology,integrating quantum mechanics principles and fuzzy theory.The proposed approach enhances decision-making accuracy,handles uncertainty,and incorporates criteria relationships.Criteria weights are determined using spherical fuzzy sets,and alternatives are ranked through the QSFTOPSIS framework.This comprehensive multi-criteria decision-making(MCDM)approach is applied to identify the optimal gate security system for an organization,considering critical factors such as accuracy,cost,and reliability.Additionally,the study compares the proposed approach with other established MCDM methods.The results confirm the alignment of rankings across these methods,demonstrating the robustness and reliability of the QSF-TOPSIS framework.The study identifies the infrared recognition and identification system(IRIS)as the most effective,with a score value of 0.5280 and optimal security system among the evaluated alternatives.This research contributes to the growing literature on quantum-enhanced decision-making models and offers a practical framework for solving complex,real-world problems involving uncertainty and ambiguity. 展开更多
关键词 Quantum spherical fuzzy numbers security systems DECISION-MAKING criteria weights TOPSIS method
在线阅读 下载PDF
Enhancing Classroom Behavior Recognition with Lightweight Multi-Scale Feature Fusion
10
作者 Chuanchuan Wang Ahmad Sufril Azlan Mohamed +3 位作者 Xiao Yang Hao Zhang Xiang Li Mohd Halim Bin Mohd Noor 《Computers, Materials & Continua》 2025年第10期855-874,共20页
Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for ... Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures,and inconsistent objects.To address this challenge,we proposed an effective,lightweight object detector method called the RFNet model(YOLO-FR).The YOLO-FR is a lightweight and effective model.Specifically,for efficient multi-scale feature extraction,effective feature pyramid shared convolutional(FPSC)was designed to improve the feature extract performance by leveraging convolutional layers with varying dilation rates from the input image in the backbone.Secondly,to address the problem of multi-scale variability in the scene,we design the Rep Ghost fusion Cross Stage Partial and Efficient Layer Aggregation Network(RGCSPELAN)to improve the network performance further and reduce the amount of computation and the number of parameters.In addition,by conducting experimental valuation on the SCB dataset3 and STBD-08 dataset.Experimental results indicate that,compared to the baseline model,the RFNet model has increased mean accuracy precision(mAP@50)from 69.6%to 71.0%on the SCB dataset3 and from 91.8%to 93.1%on the STBD-08 dataset.The RFNet approach has effectiveness precision at 68.6%,surpassing the baseline method(YOLOv11)at 3.3%and archieve the minimal size(4.9 M)on the SCB dataset3.Finally,comparing it with other algorithms,it accurately detects student behavior in complex classroom environments results confirmed that RFNet is well-suited for real-time and efficiently recognizing classroom behaviors. 展开更多
关键词 Classroom action recognition YOLO-FR feature pyramid shared convolutional rep ghost cross stage partial efficient layer aggregation network(RGCSPELAN)
在线阅读 下载PDF
Deep Learning and Heuristic Optimization for Secure and Eficient Energy Management in Smart Communities
11
作者 Murad Khan Mohammed Faisa +1 位作者 Fahad R.Albogamy Muhammad Diyan 《Computer Modeling in Engineering & Sciences》 2025年第5期2027-2052,共26页
The rapid advancements in distributed generation technologies,the widespread adoption of distributed energy resources,and the integration of 5G technology have spurred sharing economy businesses within the electricity... The rapid advancements in distributed generation technologies,the widespread adoption of distributed energy resources,and the integration of 5G technology have spurred sharing economy businesses within the electricity sector.Revolutionary technologies such as blockchain,5G connectivity,and Internet of Things(IoT)devices have facilitated peer-to-peer distribution and real-time response to fluctuations in supply and demand.Nevertheless,sharing electricity within a smart community presents numerous challenges,including intricate design considerations,equitable allocation,and accurate forecasting due to the lack of well-organized temporal parameters.To address these challenges,this proposed system is focused on sharing extra electricity within the smart community.The working of the proposed system is composed of five main phases.In phase 1,we develop a model to forecast the energy consumption of the appliances using the Long Short-Term Memory(LSTM)integrated with the attention module.In phase 2,based on the predicted energy consumption,we designed a smart scheduler with attention-induced Genetic Algorithm(GA)to schedule the appliances to reduce energy consumption.In phase 3,a dynamic Feed-in Tariff(dFIT)algorithm makes real-time tariff adjustments using LSTM for demand prediction and SHapley Additive exPlanations(SHAP)values to improve model transparency.In phase 4,the energy saved from solar systems and smart scheduling is shared with the community grid.Finally,in phase 5,SDP security ensures the integrity and confidentiality of shared energy data.To evaluate the performance of energy sharing and scheduling for houses with and without solar support,we simulated the above phases using data obtained from the energy consumption of 17 household appliances in our IoT laboratory.Finally,the simulation results show that the proposed scheme reduces energy consumption and ensures secure and efficient distribution with peers,promoting a more sustainable energy management and resilient smart community. 展开更多
关键词 Community-centric internet of things energy management micro-grids smart homes deep learning prediction security
在线阅读 下载PDF
An IoT-Enabled Hybrid DRL-XAI Framework for Transparent Urban Water Management
12
作者 Qamar H.Naith H.Mancy 《Computer Modeling in Engineering & Sciences》 2025年第7期387-405,共19页
Effective water distribution and transparency are threatened with being outrightly undermined unless the good name of urban infrastructure is maintained.With improved control systems in place to check leakage,variabil... Effective water distribution and transparency are threatened with being outrightly undermined unless the good name of urban infrastructure is maintained.With improved control systems in place to check leakage,variability of pressure,and conscientiousness of energy,issues that previously went unnoticed are now becoming recognized.This paper presents a grandiose hybrid framework that combines Multi-Agent Deep Reinforcement Learning(MADRL)with Shapley Additive Explanations(SHAP)-based Explainable AI(XAI)for adaptive and interpretable water resource management.In the methodology,the agents perform decentralized learning of the control policies for the pumps and valves based on the real-time network states,while also providing human-understandable explanations of the agents’decisions,using SHAP.This framework has been validated on five very diverse datasets,three of which are real-world scenarios involving actual water consumption from NYC and Alicante,with the other two being simulationbased standards such as LeakDB and the Water Distribution System Anomaly(WDSA)network.Empirical results demonstrate that the MADRL SHAP hybrid system reduces water loss by up to 32%,improves energy efficiency by+up to 25%,and maintains pressure stability between 91%and 93%,thereby outperforming the traditional rule-based control,single-agent DRL(Deep Reinforcement Learning),and XGBoost SHAP baselines.Furthermore,SHAP-based+interpretation brings transparency to the proposed model,with the average explanation consistency for all prediction models reaching 88%,thus further reinforcing the trustworthiness of the system on which the decision-making is based and empowering the utility operators to derive actionable insights from the model.The proposed framework addresses the critical challenges of smart water distribution. 展开更多
关键词 Multi-Agent reinforcement learning explainable artificial intelligence(XAI) SHAP(Shapley Additive Explanations) smart water distribution urban infrastructure Internet of Things(IoT) water resource optimization energy efficient control
在线阅读 下载PDF
Multi-Level Subpopulation-Based Particle Swarm Optimization Algorithm for Hybrid Flow Shop Scheduling Problem with Limited Buffers
13
作者 Yuan Zou Chao Lu +1 位作者 Lvjiang Yin Xiaoyu Wen 《Computers, Materials & Continua》 2025年第8期2305-2330,共26页
The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on th... The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on the hybrid flow shop scheduling problem with limited buffers(LBHFSP).This paper deeply investigates the LBHFSP to optimize the goal of the total completion time.To better solve the LBHFSP,a multi-level subpopulation-based particle swarm optimization algorithm(MLPSO)is proposed,which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO(particle swarm optimization)algorithm.In MLPSO,firstly,considering the impact of the limited buffers on the process of subsequent operations,a specific circular decoding strategy is developed to accommodate the characteristics of limited buffers.Secondly,an initialization strategy based on blocking time is designed to enhance the quality and diversity of the initial population.Afterward,a multi-level subpopulation collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration capability.Additionally,a local search strategy based on the first blocked job is designed to enhance the MLPSO algorithm’s exploitation capability.Lastly,numerous experiments are carried out to test the performance of the proposed MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years.The results confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when solving LBHFSP. 展开更多
关键词 Hybrid flow shop scheduling problem limited buffers PSO algorithm collaborative search blocking phenomenon
在线阅读 下载PDF
Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data
14
作者 Zhe Liu Jiahao Shi +2 位作者 Dania Santina Yulong Huang Nabil Mlaiki 《Computer Modeling in Engineering & Sciences》 2025年第9期3531-3555,共25页
The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show... The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data. 展开更多
关键词 Multi-view data neutrosophic fuzzy clustering view weight feature weight UNCERTAINTY
在线阅读 下载PDF
Pseudo Label Purification with Dual Contrastive Learning for Unsupervised Vehicle Re-Identification
15
作者 Jiyang Xu Qi Wang +4 位作者 Xin Xiong Weidong Min Jiang Luo Di Gai Qing Han 《Computers, Materials & Continua》 2025年第3期3921-3941,共21页
The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compare... The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compared to pedestrians,pseudo-labels generated through clustering are ineffective in mitigating the impact of noise,and the feature distance between inter-class and intra-class has not been adequately improved.To address the aforementioned issues,we design a dual contrastive learning method based on knowledge distillation.During each iteration,we utilize a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label categories.By conducting contrastive learning between the two student models,we extract more discernible vehicle identity cues to improve the problem of imbalanced data distribution.Subsequently,we propose a context-aware pseudo label refinement strategy that leverages contextual features by progressively associating granularity information from different bottleneck blocks.To produce more trustworthy pseudo-labels and lessen noise interference during the clustering process,the context-aware scores are obtained by calculating the similarity between global features and contextual ones,which are subsequently added to the pseudo-label encoding process.The proposed method has achieved excellent performance in overcoming label noise and optimizing data distribution through extensive experimental results on publicly available datasets. 展开更多
关键词 Unsupervised vehicle re-identification dual contrastive learning pseudo label refinement knowledge distillation
在线阅读 下载PDF
TMRE:Novel Algorithm for Computing Daily Reference Evapotranspiration Using Transformer-Based Models
16
作者 Bushra Tayyaba Muhammad Usman Ghani Khan +2 位作者 Talha Waheed Shaha Al-Otaibi Tanzila Saba 《Computers, Materials & Continua》 2025年第5期2851-2864,共14页
Reference Evapotranspiration(ETo)iswidely used to assess totalwater loss between land and atmosphere due to its importance in maintaining the atmospheric water balance,especially in agricultural and environmental mana... Reference Evapotranspiration(ETo)iswidely used to assess totalwater loss between land and atmosphere due to its importance in maintaining the atmospheric water balance,especially in agricultural and environmental management.Accurate estimation of ETo is challenging due to its dependency onmultiple climatic variables,including temperature,humidity,and solar radiation,making it a complexmultivariate time-series problem.Traditional machine learning and deep learning models have been applied to forecast ETo,achieving moderate success.However,the introduction of transformer-based architectures in time-series forecasting has opened new possibilities formore precise ETo predictions.In this study,a novel algorithm for ETo forecasting is proposed,focusing on four transformer-based models:Vanilla Transformer,Informer,Autoformer,and FEDformer(Frequency Enhanced Decomposed Transformer),applied to an ETo dataset from the Andalusian region.The novelty of the proposed algorithm lies in determining optimized window sizes based on seasonal trends and variations,which were then used with each model to enhance prediction accuracy.This custom window-sizing method allows the models to capture ETo’s unique seasonal patterns more effectively.Finally,results demonstrate that the Informer model outperformed other transformer-based models,achievingmean square error(MSE)values of 0.1404 and 0.1445 for forecast windows(15,7)and(30,15),respectively.The Vanilla Transformer also showed strong performance,closely following the Informermodel.These findings suggest that the proposed optimized window-sizing approach,combined with transformer-based architectures,is highly effective for ETo modelling.This novel strategy has the potential to be adapted in othermultivariate time-series forecasting tasks that require seasonality-sensitive approaches. 展开更多
关键词 Reference evapotranspiration ETo TRANSFORMER INFORMER autoformer FEDformer timeseries forecasting self-attention
在线阅读 下载PDF
Harnessing Machine Learning for Superior Prediction of Uniaxial Compressive Strength in Reinforced Soilcrete
17
作者 Ala’a R.Al-Shamasneh Faten Khalid Karim Arsalan Mahmoodzadeh 《Computers, Materials & Continua》 2025年第7期281-303,共23页
Soilcrete is a composite material of soil and cement that is highly valued in the construction industry.Accurate measurement of its mechanical properties is essential,but laboratory testing methods are expensive,timec... Soilcrete is a composite material of soil and cement that is highly valued in the construction industry.Accurate measurement of its mechanical properties is essential,but laboratory testing methods are expensive,timeconsuming,and include inaccuracies.Machine learning(ML)algorithms provide a more efficient alternative for this purpose,so after assessment with a statistical extraction method,ML algorithms including back-propagation neural network(BPNN),K-nearest neighbor(KNN),radial basis function(RBF),feed-forward neural networks(FFNN),and support vector regression(SVR)for predicting the uniaxial compressive strength(UCS)of soilcrete,were proposed in this study.The developed models in this study were optimized using an optimization technique,gradient descent(GD),throughout the analysis(direct optimization for neural networks and indirect optimization for other models corresponding to their hyperparameters).After doing laboratory analysis,data pre-preprocessing,and data-processing analysis,a database including 600 soilcrete specimens was gathered,which includes two different soil types(clay and limestone)and metakaolin as a mineral additive.80%of the database was used for the training set and 20%for testing,considering eight input parameters,including metakaolin content,soil type,superplasticizer content,water-to-binder ratio,shrinkage,binder,density,and ultrasonic velocity.The analysis showed that most algorithms performed well in the prediction,with BPNN,KNN,and RBF having higher accuracy compared to others(R^(2)=0.95,0.95,0.92,respectively).Based on this evaluation,it was observed that all models show an acceptable accuracy rate in prediction(RMSE:BPNN=0.11,FFNN=0.24,KNN=0.05,SVR=0.06,RBF=0.05,MAD:BPNN=0.006,FFNN=0.012,KNN=0.008,SVR=0.006,RBF=0.009).The ML importance ranking-sensitivity analysis indicated that all input parameters influence theUCS of soilcrete,especially the water-to-binder ratio and density,which have themost impact. 展开更多
关键词 Soilcrete laboratory analysis uniaxial compressive strength machine learning sensitivity analysis
在线阅读 下载PDF
Addressing Modern Cybersecurity Challenges: A Hybrid Machine Learning and Deep Learning Approach for Network Intrusion Detection
18
作者 Khadija Bouzaachane El Mahdi El Guarmah +1 位作者 Abdullah M.Alnajim Sheroz Khan 《Computers, Materials & Continua》 2025年第8期2391-2410,共20页
The rapid increase in the number of Internet of Things(IoT)devices,coupled with a rise in sophisticated cyberattacks,demands robust intrusion detection systems.This study presents a holistic,intelligent intrusion dete... The rapid increase in the number of Internet of Things(IoT)devices,coupled with a rise in sophisticated cyberattacks,demands robust intrusion detection systems.This study presents a holistic,intelligent intrusion detection system.It uses a combined method that integrates machine learning(ML)and deep learning(DL)techniques to improve the protection of contemporary information technology(IT)systems.Unlike traditional signature-based or singlemodel methods,this system integrates the strengths of ensemble learning for binary classification and deep learning for multi-class classification.This combination provides a more nuanced and adaptable defense.The research utilizes the NF-UQ-NIDS-v2 dataset,a recent,comprehensive benchmark for evaluating network intrusion detection systems(NIDS).Our methodological framework employs advanced artificial intelligence techniques.Specifically,we use ensemble learning algorithms(Random Forest,Gradient Boosting,AdaBoost,and XGBoost)for binary classification.Deep learning architectures are also employed to address the complexities of multi-class classification,allowing for fine-grained identification of intrusion types.To mitigate class imbalance,a common problem in multi-class intrusion detection that biases model performance,we use oversampling and data augmentation.These techniques ensure equitable class representation.The results demonstrate the efficacy of the proposed hybrid ML-DL system.It achieves significant improvements in intrusion detection accuracy and reliability.This research contributes substantively to cybersecurity by providing a more robust and adaptable intrusion detection solution. 展开更多
关键词 Network intrusion detection systems(NIDS) NF-UQ-NIDS-v2 dataset ensemble learning decision tree K-means SMOTE deep learning
在线阅读 下载PDF
A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay
19
作者 Soumia Zertal Asma Saighi +2 位作者 Sofia Kouah Souham Meshoul Zakaria Laboudi 《Computer Modeling in Engineering & Sciences》 2025年第9期3737-3782,共46页
Cardiovascular diseases(CVDs)continue to present a leading cause ofmortalityworldwide,emphasizing the importance of early and accurate prediction.Electrocardiogram(ECG)signals,central to cardiac monitoring,have increa... Cardiovascular diseases(CVDs)continue to present a leading cause ofmortalityworldwide,emphasizing the importance of early and accurate prediction.Electrocardiogram(ECG)signals,central to cardiac monitoring,have increasingly been integratedwithDeep Learning(DL)for real-time prediction of CVDs.However,DL models are prone to performance degradation due to concept drift and to catastrophic forgetting.To address this issue,we propose a realtime CVDs prediction approach,referred to as ADWIN-GFR that combines Convolutional Neural Network(CNN)layers,for spatial feature extraction,with Gated Recurrent Units(GRU),for temporal modeling,alongside adaptive drift detection and mitigation mechanisms.The proposed approach integratesAdaptiveWindowing(ADWIN)for realtime concept drift detection,a fine-tuning strategy based on Generative Features Replay(GFR)to preserve previously acquired knowledge,and a dynamic replay buffer ensuring variance,diversity,and data distribution coverage.Extensive experiments conducted on the MIT-BIH arrhythmia dataset demonstrate that ADWIN-GFR outperforms standard fine-tuning techniques,achieving an average post-drift accuracy of 95.4%,amacro F1-score of 93.9%,and a remarkably low forgetting score of 0.9%.It also exhibits an average drift detection delay of 12 steps and achieves an adaptation gain of 17.2%.These findings underscore the potential of ADWIN-GFR for deployment in real-world cardiac monitoring systems,including wearable ECG devices and hospital-based patient monitoring platforms. 展开更多
关键词 Real-time cardiovascular disease prediction concept drift detection catastrophic forgetting fine-tuning electrocardiogram convolutional neural networks gated recurrent units adaptive windowing generative feature replay
在线阅读 下载PDF
A Hybrid Framework Combining Rule-Based and Deep Learning Approaches for Data-Driven Verdict Recommendations
20
作者 Muhammad Hameed Siddiqi Menwa Alshammeri +6 位作者 Jawad Khan Muhammad Faheem Khan Asfandyar Khan Madallah Alruwaili Yousef Alhwaiti Saad Alanazi Irshad Ahmad 《Computers, Materials & Continua》 2025年第6期5345-5371,共27页
As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework... As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems. 展开更多
关键词 Verdict recommendation legal knowledge base judicial text case laws semantic similarity legal domain features RULE-BASED deep learning
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部