期刊文献+
共找到668篇文章
< 1 2 34 >
每页显示 20 50 100
Enhancing Military Visual Communication in Harsh Environments Using Computer Vision Techniques
1
作者 Shitharth Selvarajan Hariprasath Manoharan +2 位作者 Taher Al-Shehari Nasser A Alsadhan Subhav Singh 《Computers, Materials & Continua》 2025年第8期3541-3557,共17页
This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the... This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the photographs by reducing truncations in the existing images.Furthermore,the collected images undergo processing using histogram gradients and a flexible threshold value that may be adjusted in specific situations.Thus,it is possible to reduce the occurrence of overlapping circumstances in collective picture characteristics by substituting grey-scale photos with colorized factors.The proposed method offers additional robust feature representations by imposing a limiting factor to reduce overall scattering values.This is achieved by visualizing a graphical function.Moreover,to derive valuable insights from a series of photos,both the separation and in-version processes are conducted.This involves analyzing comparison results across four different scenarios.The results of the comparative analysis show that the proposed method effectively reduces the difficulties associated with time and space to 1 s and 3%,respectively.In contrast,the existing strategy exhibits higher complexities of 3 s and 9.1%,respectively. 展开更多
关键词 Image enhancement visual information harsh environment computer vision
在线阅读 下载PDF
An Effective and Secure Quality Assurance System for a Computer Science Program 被引量:1
2
作者 Mohammad Alkhatib 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期975-995,共21页
Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components o... Improving the quality assurance (QA) processes and acquiring accreditation are top priorities for academic programs. The learning outcomes (LOs)assessment and continuous quality improvement represent core components ofthe quality assurance system (QAS). Current assessment methods suffer deficiencies related to accuracy and reliability, and they lack well-organized processes forcontinuous improvement planning. Moreover, the absence of automation, andintegration in QA processes forms a major obstacle towards developing efficientquality system. There is a pressing need to adopt security protocols that providerequired security services to safeguard the valuable information processed byQAS as well. This research proposes an effective methodology for LOs assessment and continuous improvement processes. The proposed approach ensuresmore accurate and reliable LOs assessment results and provides systematic wayfor utilizing those results in the continuous quality improvement. This systematicand well-specified QA processes were then utilized to model and implement automated and secure QAS that efficiently performs quality-related processes. Theproposed system adopts two security protocols that provide confidentiality, integrity, and authentication for quality data and reports. The security protocols avoidthe source repudiation, which is important in the quality reporting system. This isachieved through implementing powerful cryptographic algorithms. The QASenables efficient data collection and processing required for analysis and interpretation. It also prepares for the development of datasets that can be used in futureartificial intelligence (AI) researches to support decision making and improve thequality of academic programs. The proposed approach is implemented in a successful real case study for a computer science program. The current study servesscientific programs struggling to achieve academic accreditation, and gives rise tofully automating and integrating the QA processes and adopting modern AI andsecurity technologies to develop effective QAS. 展开更多
关键词 Quality assurance information security cryptographic algorithms education programs
在线阅读 下载PDF
基于多尺度门控卷积与深度注意力的时序分类方法 被引量:1
3
作者 杨瑞 张海清 +3 位作者 李代伟 Rattasit Sukhahuta 于曦 唐聃 《软件导刊》 2025年第2期33-39,共7页
针对现有时序分类方法难以充分捕捉序列中的深层特征以及特征学习不足的问题,提出一种基于多尺度门控卷积与深度注意力的时序分类网络MGDA-Net,有效提高了时序分类任务的准确率。MGDA-Net利用多尺度门控卷积模块捕获多尺度信息,并通过... 针对现有时序分类方法难以充分捕捉序列中的深层特征以及特征学习不足的问题,提出一种基于多尺度门控卷积与深度注意力的时序分类网络MGDA-Net,有效提高了时序分类任务的准确率。MGDA-Net利用多尺度门控卷积模块捕获多尺度信息,并通过门控机制筛选和调控特征流动来增强特征提取能力。同时,利用深度注意力模块,在保留通道间关系的基础上进一步捕获特征之间的空间关系,提升模型对重要特征的学习能力;引入残差链接促进特征复用和信息流动。实验结果显示,MGDA-Net在20个时序数据集上取得了最高排名和最低平均误差,在多个高维度数据集上的分类准确率提升2.3%~10.5%,证明了其有效性。 展开更多
关键词 时间序列分类 多尺度门控卷积 深度注意力 残差网络
在线阅读 下载PDF
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms 被引量:1
4
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
在线阅读 下载PDF
A Comprehensive Review of Multimodal Deep Learning for Enhanced Medical Diagnostics 被引量:1
5
作者 Aya M.Al-Zoghby Ahmed Ismail Ebada +2 位作者 Aya S.Saleh Mohammed Abdelhay Wael A.Awad 《Computers, Materials & Continua》 2025年第9期4155-4193,共39页
Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dim... Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dimensional healthcare data,encompassing genomic,transcriptomic,and other omics profiles,as well as radiological imaging and histopathological slides,makes this approach increasingly important because,when examined separately,these data sources only offer a fragmented picture of intricate disease processes.Multimodal deep learning leverages the complementary properties of multiple data modalities to enable more accurate prognostic modeling,more robust disease characterization,and improved treatment decision-making.This review provides a comprehensive overview of the current state of multimodal deep learning approaches in medical diagnosis.We classify and examine important application domains,such as(1)radiology,where automated report generation and lesion detection are facilitated by image-text integration;(2)histopathology,where fusion models improve tumor classification and grading;and(3)multi-omics,where molecular subtypes and latent biomarkers are revealed through cross-modal learning.We provide an overview of representative research,methodological advancements,and clinical consequences for each domain.Additionally,we critically analyzed the fundamental issues preventing wider adoption,including computational complexity(particularly in training scalable,multi-branch networks),data heterogeneity(resulting from modality-specific noise,resolution variations,and inconsistent annotations),and the challenge of maintaining significant cross-modal correlations during fusion.These problems impede interpretability,which is crucial for clinical trust and use,in addition to performance and generalizability.Lastly,we outline important areas for future research,including the development of standardized protocols for harmonizing data,the creation of lightweight and interpretable fusion architectures,the integration of real-time clinical decision support systems,and the promotion of cooperation for federated multimodal learning.Our goal is to provide researchers and clinicians with a concise overview of the field’s present state,enduring constraints,and exciting directions for further research through this review. 展开更多
关键词 Multimodal deep learning medical diagnostics multimodal healthcare fusion healthcare data integration
暂未订购
Towards Net Zero Resilience: A Futuristic Architectural Strategy for Cyber-Attack Defence in Industrial Control Systems (ICS) and Operational Technology (OT) 被引量:1
6
作者 Hariharan Ramachandran Richard Smith +2 位作者 Kenny Awuson David Tawfik Al-Hadhrami Parag Acharya 《Computers, Materials & Continua》 2025年第2期3619-3641,共23页
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f... This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals. 展开更多
关键词 ICS/OT cyber Programmable Logic Controllers(PLC)security detection safety reliability proof testing gas compressor station ICS resilience security architecture ICS
在线阅读 下载PDF
Lightweight consensus mechanisms in the Internet of Blockchained Things:Thorough analysis and research directions 被引量:1
7
作者 Somia Sahraoui Abdelmalik Bachir 《Digital Communications and Networks》 2025年第4期1245-1260,共16页
The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and ... The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support. 展开更多
关键词 Blockchain Internet of Things Lightweight consensus
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights
8
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 Particle swarm optimization(PSO) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
WaveSeg-UNet model for overlapped nuclei segmentation from multi-organ histopathology images
9
作者 Hameed Ullah Khan Basit Raza +1 位作者 Muhammad Asad Iqbal Khan Muhammad Faheem 《CAAI Transactions on Intelligence Technology》 2025年第1期253-267,共15页
Nuclei segmentation is a challenging task in histopathology images.It is challenging due to the small size of objects,low contrast,touching boundaries,and complex structure of nuclei.Their segmentation and counting pl... Nuclei segmentation is a challenging task in histopathology images.It is challenging due to the small size of objects,low contrast,touching boundaries,and complex structure of nuclei.Their segmentation and counting play an important role in cancer identification and its grading.In this study,WaveSeg-UNet,a lightweight model,is introduced to segment cancerous nuclei having touching boundaries.Residual blocks are used for feature extraction.Only one feature extractor block is used in each level of the encoder and decoder.Normally,images degrade quality and lose important information during down-sampling.To overcome this loss,discrete wavelet transform(DWT)alongside maxpooling is used in the down-sampling process.Inverse DWT is used to regenerate original images during up-sampling.In the bottleneck of the proposed model,atrous spatial channel pyramid pooling(ASCPP)is used to extract effective high-level features.The ASCPP is the modified pyramid pooling having atrous layers to increase the area of the receptive field.Spatial and channel-based attention are used to focus on the location and class of the identified objects.Finally,watershed transform is used as a post processing technique to identify and refine touching boundaries of nuclei.Nuclei are identified and counted to facilitate pathologists.The same domain of transfer learning is used to retrain the model for domain adaptability.Results of the proposed model are compared with state-of-the-art models,and it outperformed the existing studies. 展开更多
关键词 deep learning histopathology images machine learning nuclei segmentation U-Net
在线阅读 下载PDF
A Secure Audio Encryption Method Using Tent-Controlled Permutation and Logistic Map-Based Key Generation
10
作者 Ibtisam A.Taqi Sarab M.Hameed 《Computers, Materials & Continua》 2025年第10期1653-1674,共22页
The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information.Due to high processing requirements,tr... The exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information.Due to high processing requirements,traditional encryption algorithms demand considerable computational effort for real-time audio encryption.To address these challenges,this paper presents a permutation for secure audio encryption using a combination of Tent and 1D logistic maps.The audio data is first shuffled using Tent map for the random permutation.The high random secret key with a length equal to the size of the audio data is then generated using a 1D logistic map.Finally,the Exclusive OR(XOR)operation is applied between the generated key and the shuffled audio to yield the cipher audio.The experimental results prove that the proposed method surpassed the other techniques by encrypting two types of audio files,as mono and stereo audio files with large sizes up to 122 MB,different sample rates 22,050,44,100,48,000,and 96,000 for WAV and 44,100 sample rates for MP3 of size 11 MB.The results show high Mean Square Error(MSE),low Signal-to-Noise Ratio(SNR),spectral distortion,100%Number of Sample Change Rate(NSCR),high Percent Residual Deviation(PRD),low Correlation Coefficient(CC),large key space 2^(616),high sensitivity to a slight change in the secret key and that it can counter several attacks,namely brute force attack,statistical attack,differential attack,and noise attack. 展开更多
关键词 Wave protection 1D logistic map Tent map random permutation key generation
在线阅读 下载PDF
Enhancing Educational Materials: Integrating Emojis and AI Models into Learning Management Systems
11
作者 Shaya A.Alshaya 《Computers, Materials & Continua》 2025年第5期3075-3095,共21页
The integration of visual elements,such as emojis,into educational content represents a promising approach to enhancing student engagement and comprehension.However,existing efforts in emoji integration often lack sys... The integration of visual elements,such as emojis,into educational content represents a promising approach to enhancing student engagement and comprehension.However,existing efforts in emoji integration often lack systematic frameworks capable of addressing the contextual and pedagogical nuances required for effective implementation.This paper introduces a novel framework that combines Data-Driven Error-Correcting Output Codes(DECOC),Long Short-Term Memory(LSTM)networks,and Multi-Layer Deep Neural Networks(ML-DNN)to identify optimal emoji placements within computer science course materials.The originality of the proposed system lies in its ability to leverage sentiment analysis techniques and contextual embeddings to align emoji recommendations with both the emotional tone and learning objectives of course content.A meticulously annotated dataset,comprising diverse topics in computer science,was developed to train and validate the model,ensuring its applicability across a wide range of educational contexts.Comprehensive validation demonstrated the system’s superior performance,achieving an accuracy of 92.4%,precision of 90.7%,recall of 89.3%,and an F1-score of 90.0%.Comparative analysis with baselinemodels and relatedworks confirms themodel’s ability tooutperformexisting approaches inbalancing accuracy,relevance,and contextual appropriateness.Beyond its technical advancements,this framework offers practical benefits for educators by providing an Artificial Intelligence-assisted(AI-assisted)tool that facilitates personalized content adaptation based on student sentiment and engagement patterns.By automating the identification of appropriate emoji placements,teachers can enhance digital course materials with minimal effort,improving the clarity of complex concepts and fostering an emotionally supportive learning environment.This paper contributes to the emerging field of AI-enhanced education by addressing critical gaps in personalized content delivery and pedagogical support.Its findings highlight the transformative potential of integrating AI-driven emoji placement systems into educational materials,offering an innovative tool for fostering student engagement and enhancing learning outcomes.The proposed framework establishes a foundation for future advancements in the visual augmentation of educational resources,emphasizing scalability and adaptability for broader applications in e-learning. 展开更多
关键词 Emoji Integration artificial intelligence in education learning management systems educational materials enhancement student engagement
在线阅读 下载PDF
A Deep Learning Framework for Arabic Cyberbullying Detection in Social Networks
12
作者 Yahya Tashtoush Areen Banysalim +3 位作者 Majdi Maabreh Shorouq Al-Eidi Ola Karajeh Plamen Zahariev 《Computers, Materials & Continua》 2025年第5期3113-3134,共22页
Social media has emerged as one of the most transformative developments on the internet,revolu-tionizing the way people communicate and interact.However,alongside its benefits,social media has also given rise to signi... Social media has emerged as one of the most transformative developments on the internet,revolu-tionizing the way people communicate and interact.However,alongside its benefits,social media has also given rise to significant challenges,one of the most pressing being cyberbullying.This issue has become a major concern in modern society,particularly due to its profound negative impacts on the mental health and well-being of its victims.In the Arab world,where social media usage is exceptionblly high,cyberbullying has become increasingly prevalent,necessitating urgent attention.Early detection of harmful online behavior is critical to fostering safer digital environments and mitigating the adverse efcts of cyberbullying.This underscores the importance of developing advanced tools and systems to identify and address such behavior efectively.This paper investigates the development of a robust cyberbullying detection and classifcation system tailored for Arabic comments on YouTube.The study explores the efectiveness of various deep learning models,including Bi-LSTM(Bidirectional Long Short Term Memory),LSTM(Long Short-Term Memory),CNN(Convolutional Neural Networks),and a hybrid CNN-LSTM,in classifying Arabic comments into binary classes(bullying or not)and multiclass categories.A comprehensive dataset of 20,000 Arabic YouTube comments was collected,preprocessed,and labeled to support these tasks.The results revealed that the CNN and hybrid CNN-LSTM models achieved the highest accuracy in binary classification,reaching an impressive 91.9%.For multiclass dlassification,the LSTM and Bi-LSTM models outperformed others,achieving an accuracy of 89.5%.These findings highlight the efctiveness of deep learning approaches in the mitigation of cyberbullying within Arabic online communities. 展开更多
关键词 Arabic text lassification arabic text mining cyberbullying detection neural networks deep learning CNN LSTM YOUTUBE Bi-LSTM
在线阅读 下载PDF
Enhancing Healthcare Cybersecurity through the Development and Evaluation of Intrusion Detection Systems
13
作者 Muhammad Usama Arshad Aziz +4 位作者 Imtiaz Hassan Shynar Akhmetzhanova Sultan Noman Qasem Abdullah M.Albarrak Tawfik Al-Hadhrami 《Computer Modeling in Engineering & Sciences》 2025年第7期1225-1248,共24页
The increasing reliance on digital infrastructure in modern healthcare systems has introduced significant cybersecurity challenges,particularly in safeguarding sensitive patient data and maintaining the integrity of m... The increasing reliance on digital infrastructure in modern healthcare systems has introduced significant cybersecurity challenges,particularly in safeguarding sensitive patient data and maintaining the integrity of medical services.As healthcare becomes more data-driven,cyberattacks targeting these systems continue to rise,necessitating the development of robust,domain-adapted Intrusion Detection Systems(IDS).However,current IDS solutions often lack access to domain-specific datasets that reflect realistic threat scenarios in healthcare.To address this gap,this study introduces HCKDDCUP,a synthetic dataset modeled on the widely used KDDCUP benchmark,augmented with healthcare-relevant attributes such as patient data,treatments,and diagnoses to better simulate the unique conditions of clinical environments.This research applies standard machine learning algorithms Random Forest(RF),Decision Tree(DT),and K-Nearest Neighbors(KNN)to both the KDDCUP and HCKDDCUP datasets.The methodology includes data preprocessing,feature selection,dimensionality reduction,and comparative performance evaluation.Experimental results show that the RF model performed best,achieving 98%accuracy on KDDCUP and 99%on HCKDDCUP,highlighting its effectiveness in detecting cyber intrusions within a healthcare-specific context.This work contributes a valuable resource for future research and underscores the need for IDS development tailored to sector-specific requirements. 展开更多
关键词 CYBERSECURITY KDDCUP HCKDDCUP machine learning anomaly detection data privacy
暂未订购
Hybrid DF and SIR Forwarding Strategy in Conventional and Distributed Alamouti Space-Time Coded Cooperative Networks
14
作者 Slim Chaoui Omar Alruwaili +1 位作者 Faeiz Alserhani Haifa Harrouch 《Computer Modeling in Engineering & Sciences》 2025年第2期1933-1954,共22页
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-... In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation. 展开更多
关键词 Cooperative communication soft information relaying soft symbols modeling cooperative diversity gain distributed Alamouti space-time code
在线阅读 下载PDF
A Web Platform Based on the NIST CSF for Assessing and Monitoring the Cybersecurity of SMEs and Critical Infrastructures
15
作者 Mohamadou Konate Pegdwinde Justin Kouraogo Omar Hamidou Harouna 《Open Journal of Applied Sciences》 2025年第1期274-284,共11页
The NIST Cybersecurity Framework (NIST CSF) serves as a voluntary guideline aimed at helping organizations, tiny and medium-sized enterprises (SMEs), and critical infrastructure operators, effectively manage cyber ris... The NIST Cybersecurity Framework (NIST CSF) serves as a voluntary guideline aimed at helping organizations, tiny and medium-sized enterprises (SMEs), and critical infrastructure operators, effectively manage cyber risks. Although comprehensive, the complexity of the NIST CSF can be overwhelming, especially for those lacking extensive cybersecurity resources. Current implementation tools often cater to larger companies, neglecting the specific needs of SMEs, which can be vulnerable to cyber threats. To address this gap, our research proposes a user-friendly, open-source web platform designed to simplify the implementation of the NIST CSF. This platform enables organizations to assess their risk exposure and continuously monitor their cybersecurity maturity through tailored recommendations based on their unique profiles. Our methodology includes a literature review of existing tools and standards, followed by a description of the platform’s design and architecture. Initial tests with SMEs in Burkina Faso reveal a concerning cybersecurity maturity level, indicating the urgent need for improved strategies based on our findings. By offering an intuitive interface and cross-platform accessibility, this solution aims to empower organizations to enhance their cybersecurity resilience in an evolving threat landscape. The article concludes with discussions on the practical implications and future enhancements of the tool. 展开更多
关键词 CYBERSECURITY NIST CSF Framework Cybersecurity Assessment Tool Cybersecurity Mitigation Small and Medium-Sized Enterprises Critical Infrastructure
在线阅读 下载PDF
Reinforcement Learning for Solving the Knapsack Problem
16
作者 Zhenfu Zhang Haiyan Yin +1 位作者 Liudong Zuo Pan Lai 《Computers, Materials & Continua》 2025年第7期919-936,共18页
The knapsack problem is a classical combinatorial optimization problem widely encountered in areas such as logistics,resource allocation,and portfolio optimization.Traditional methods,including dynamic program-ming(DP... The knapsack problem is a classical combinatorial optimization problem widely encountered in areas such as logistics,resource allocation,and portfolio optimization.Traditional methods,including dynamic program-ming(DP)and greedy algorithms,have been effective in solving small problem instances but often struggle with scalability and efficiency as the problem size increases.DP,for instance,has exponential time complexity and can become computationally prohibitive for large problem instances.On the other hand,greedy algorithms offer faster solutions but may not always yield the optimal results,especially when the problem involves complex constraints or large numbers of items.This paper introduces a novel reinforcement learning(RL)approach to solve the knapsack problem by enhancing the state representation within the learning environment.We propose a representation where item weights and volumes are expressed as ratios relative to the knapsack’s capacity,and item values are normalized to represent their percentage of the total value across all items.This novel state modification leads to a 5%improvement in accuracy compared to the state-of-the-art RL-based algorithms,while significantly reducing execution time.Our RL-based method outperforms DP by over 9000 times in terms of speed,making it highly scalable for larger problem instances.Furthermore,we improve the performance of the RL model by incorporating Noisy layers into the neural network architecture.The addition of Noisy layers enhances the exploration capabilities of the agent,resulting in an additional accuracy boost of 0.2%–0.5%.The results demonstrate that our approach not only outperforms existing RL techniques,such as the Transformer model in terms of accuracy,but also provides a substantial improvement than DP in computational efficiency.This combination of enhanced accuracy and speed presents a promising solution for tackling large-scale optimization problems in real-world applications,where both precision and time are critical factors. 展开更多
关键词 Knapsack problem reinforcement learning state modification noisy layers neural networks accuracy improvement efficiency enhancement
在线阅读 下载PDF
An Overlapped Multihead Self-Attention-Based Feature Enhancement Approach for Ocular Disease Image Recognition
17
作者 Peng Xiao Haiyu Xu +3 位作者 Peng Xu Zhiwei Guo Amr Tolba Osama Alfarraj 《Computers, Materials & Continua》 2025年第11期2999-3022,共24页
Medical image analysis based on deep learning has become an important technical requirement in the field of smart healthcare.In view of the difficulties in collaborative modeling of local details and global features i... Medical image analysis based on deep learning has become an important technical requirement in the field of smart healthcare.In view of the difficulties in collaborative modeling of local details and global features in multimodal image analysis of ophthalmology,as well as the existence of information redundancy in cross-modal data fusion,this paper proposes amultimodal fusion framework based on cross-modal collaboration and weighted attention mechanism.In terms of feature extraction,the framework collaboratively extracts local fine-grained features and global structural dependencies through a parallel dual-branch architecture,overcoming the limitations of traditional single-modality models in capturing either local or global information;in terms of fusion strategy,the framework innovatively designs a cross-modal dynamic fusion strategy,combining overlappingmulti-head self-attention modules with a bidirectional feature alignment mechanism,addressing the bottlenecks of low feature interaction efficiency and excessive attention fusion computations in traditional parallel fusion,and further introduces cross-domain local integration technology,which enhances the representation ability of the lesion area through pixel-level feature recalibration and optimizes the diagnostic robustness of complex cases.Experiments show that the framework exhibits excellent feature expression and generalization performance in cross-domain scenarios of ophthalmic medical images and natural images,providing a high-precision,low-redundancy fusion paradigm for multimodal medical image analysis,and promoting the upgrade of intelligent diagnosis and treatment fromsingle-modal static analysis to dynamic decision-making. 展开更多
关键词 Overlapping multi-head self-attention deep learning cross-modal dynamic fusion multi-level fusion
在线阅读 下载PDF
Narwhal Optimizer:A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems
18
作者 Raja Masadeh Omar Almomani +4 位作者 Abdullah Zaqebah Shayma Masadeh Kholoud Alshqurat Ahmad Sharieh Nesreen Alsharman 《Computers, Materials & Continua》 2025年第11期3709-3737,共29页
This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narw... This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals,“unicorns of the sea”,particularly the use of their distinctive spiral tusks,which play significant roles in hunting,searching prey,navigation,echolocation,and complex social interaction.Particularly,the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the Arctic ice.These functions provide a strong assessment basis for investigating the algorithm’s prowess at balancing exploration and exploitation,convergence speed,and solution accuracy.The performance of the NWOA is evaluated on 30 benchmark test functions.A comparison study using the Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Perfumer Optimization Algorithm(POA),Candle Flame Optimization(CFO)Algorithm,Particle Swarm Optimization(PSO)Algorithm,and Genetic Algorithm(GA)validates the results.As evidenced in the experimental results,NWOA is capable of yielding competitive outcomes among these well-known optimizers,whereas in several instances.These results suggest thatNWOAhas proven to be an effective and robust optimization tool suitable for solving many different complex optimization problems from the real world. 展开更多
关键词 Optimization metaheuristic optimization algorithm narwhal optimization algorithm benchmarks
在线阅读 下载PDF
Leveraging Unlabeled Corpus for Arabic Dialect Identification
19
作者 Mohammed Abdelmajeed Jiangbin Zheng +3 位作者 Ahmed Murtadha Youcef Nafa Mohammed Abaker Muhammad Pervez Akhter 《Computers, Materials & Continua》 2025年第5期3471-3491,共21页
Arabic Dialect Identification(DID)is a task in Natural Language Processing(NLP)that involves determining the dialect of a given piece of text in Arabic.The state-of-the-art solutions for DID are built on various deep ... Arabic Dialect Identification(DID)is a task in Natural Language Processing(NLP)that involves determining the dialect of a given piece of text in Arabic.The state-of-the-art solutions for DID are built on various deep neural networks that commonly learn the representation of sentences in response to a given dialect.Despite the effectiveness of these solutions,the performance heavily relies on the amount of labeled examples,which is labor-intensive to atain and may not be readily available in real-world scenarios.To alleviate the burden of labeling data,this paper introduces a novel solution that leverages unlabeled corpora to boost performance on the DID task.Specifically,we design an architecture that enables learning the shared information between labeled and unlabeled texts through a gradient reversal layer.The key idea is to penalize the model for learning source dataset specific features and thus enable it to capture common knowledge regardless of the label.Finally,we evaluate the proposed solution on benchmark datasets for DID.Our extensive experiments show that it performs signifcantly better,especially,with sparse labeled data.By comparing our approach with existing Pre-trained Language Models(PLMs),we achieve a new state-of-the-art performance in the DID field.The code will be available on GitHub upon the paper's acceptance. 展开更多
关键词 Arabic dialect identification natural language processing bidirectional encoder representations from transformers pre-trained language models gradient reversal layer
在线阅读 下载PDF
A deep-learning-based MAC for integrating channel access,rate adaptation,and channel switch
20
作者 Jiantao Xin Wei Xu +2 位作者 Bin Cao Taotao Wang Shengli Zhang 《Digital Communications and Networks》 2025年第4期1041-1053,共13页
With increasing density and heterogeneity in unlicensed wireless networks,traditional MAC protocols,such as Carrier Sense Multiple Access with Collision Avoidance(CSMA/CA)in Wi-Fi networks,are experiencing performance... With increasing density and heterogeneity in unlicensed wireless networks,traditional MAC protocols,such as Carrier Sense Multiple Access with Collision Avoidance(CSMA/CA)in Wi-Fi networks,are experiencing performance degradation.This is manifested in increased collisions and extended backoff times,leading to diminished spectrum efficiency and protocol coordination.Addressing these issues,this paper proposes a deep-learning-based MAC paradigm,dubbed DL-MAC,which leverages spectrum data readily available from energy detection modules in wireless devices to achieve the MAC functionalities of channel access,rate adaptation,and channel switch.First,we utilize DL-MAC to realize a joint design of channel access and rate adaptation.Subsequently,we integrate the capability of channel switching into DL-MAC,enhancing its functionality from single-channel to multi-channel operations.Specifically,the DL-MAC protocol incorporates a Deep Neural Network(DNN)for channel selection and a Recurrent Neural Network(RNN)for the joint design of channel access and rate adaptation.We conducted real-world data collection within the 2.4 GHz frequency band to validate the effectiveness of DL-MAC.Experimental results demonstrate that DL-MAC exhibits significantly superior performance compared to traditional algorithms in both single and multi-channel environments,and also outperforms single-function designs.Additionally,the performance of DL-MAC remains robust,unaffected by channel switch overheads within the evaluation range. 展开更多
关键词 Deep learning Channel access Rate adaptation Channel switch
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部